Edith Quimby

quimbyEdith Hinkley Quimby began her career in 1919 at the Memorial Hospital in New York City where Gioacchino Failla had established the first research laboratory devoted to the medical uses of radiation. Failla needed an assistant and, as Quimby remembers it, "This job turned up. I took it." Although no standard techniques were available at the time, radium was widely used to treat cancer. Radium-containing needles were applied to tumors in a makeshift fashion, with no certainty that the tumors received the required exposures. Quimby was the first to determine the distribution of the radiation doses in tissue from various arrangements of radium needles. The techniques she described in 1932 for choosing the most effective grouping of radium needles were widely adopted in the United States and served as the forerunner of Parker and Paterson's Manchester system. During the same period, she quantified the different doses from beta and gamma radiation required to produce the same biological effect such as skin eryhtma (i.e., reddening of the skin). In doing so, she pioneered the concept of the relative biological effectiveness of radiation (RBE). This important concept is still employed by radiobiologists and served as the basis for the quality factor used to convert an absorbed dose measured in rad (or gray) to a dose equivalent in rem (or sievert). Although radiologists had previously used X-ray film to estimate radiation exposures, Quimby was the first (ca. 1923) to institute a full scale "film badge" program, which consisted of cutting X-ray film into strips, covered them with black paper and distributed them among the laboratory personnel. In the 1940s, Quimby and Failla moved to Columbia University and began working with the newly available artificial radioisotopes being produced by accelerators and reactors. The early clinical trials with radioactive sodium and iodine to diagnose and treat various medical disorders established her as one of the pioneers of nuclear medicine. Quimby finished her career at Columbia University by teaching a new generation about radiation physics and the clinical use of radioisotopes.

Thanks to the following group for allowing us to reprint this information:

The Health Physics Society
1313 Dolley Madison Blvd., Suite 402
Mclean, Virginia 22101

Tel: 703-790-1745
Fax: 703-790-2672