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Preface

The three volumes VIII/1A, B, C document the state of the art of “Laser Physics and Applica-
tions”. Scientific trends and related technological aspects are considered by compiling results and
conclusions from phenomenology, observation and experience. Reliable data, physical fundamentals
and detailed references are presented.

In the recent decades the laser source matured to a universal tool common to scientific research
as well as to industrial use. Today a technical goal is the generation of optical power towards shorter
wavelengths, shorter pulses and higher power for application in science and industry. Tailoring the
optical energy in wavelength, space and time is a requirement for the investigation of laser-induced
processes, i.e. excitation, non-linear amplification, storage of optical energy, etc. According to the
actual trends in laser research and development, Vol. VIII/1 is split into three parts: Vol. VIII/1A
with its two subvolumes 1A1 and 1A2 covers laser fundamentals, Vol. VIII/1B deals with laser
systems and Vol. VIII/1C gives an overview on laser applications.

In Vol. VIII/1A1 the following topics are treated in detail:

Part 1: Fundamentals of light-matter interaction

This part compiles the basic elements of classical electromagnetic wave theory, non-relativistic
quantum mechanics of the two-level system and its interaction with the non-quantized radiation
field. The relevant relations with their approximations and range of validity are discussed. It
starts with Maxwell’s equations, wave equation and SVE-approximations, presents the Schrodinger
equations, the field/atom interaction including the Einstein coefficients and cross-sections. The
main parameters characterizing the two-level system with typical numbers are given in several
tables. Finally, the coherent interaction is briefly discussed. This semiclassical approach is sufficient
for most applications in laser technology. The fully quantized theory is offered in Vol. VIII/1A2,
Chap. 5.

Part 2: Radiometry

In the first section the definitions of the radiometric quantities and their measurement are sum-
marized. In the second part the main elements of laser beam characterization are compiled with a
detailed discussion of the theoretical background. The experimental determination of the essential
quantities according to the ISO-normalizations is given.

Part 3: Linear optics

The design of optical resonators and beam handling requires a broad knowledge in optics. In this
part the fundamentals of beam propagation, Gaussian beams, diffraction, refraction, lens design
and crystal optics are presented. The extensive references give access to detailed information.



VIII Preface

Part 4: Nonlinear optics

Nonlinear effects are widely used in laser technology to generate new wavelengths or to improve
beam quality.In four sections the essential nonlinear optical effects are discussed: frequency con-
version in crystals, frequency conversion in gases and liquids, stimulated scattering and phase
conjugation. In extensive tables the coefficients of the nonlinear processes are compiled.

August 2005 The Editors
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1.1 Fundamentals of the semiclassical laser theory

V.A. LorpoTA, H. WEBER

A rigorous description of light—matter interaction requires a fully quantized system of field equa-
tions, which is the content of quantum optics [70Hakl [05Wall [07Scul [95Manl, [01Vog]. This theory
is well developed and the results are confirmed perfectly by many experiments (see Chap. 5.1).
But most problems of laser design and laser technology can be solved in a satisfactory way by
applying the semiclassical theory. This means a non-relativistic quantum-mechanical approach for
the electronic system and a non-quantized, classical electromagnetic field.

Non-relativistic means that the velocity of the interacting electrons is small compared with the
velocity of light. This holds for the outer shell electrons of the atoms and molecules, which are
relevant in laser physics. It is not true for the free-electron laser and for the interaction of strong
fields with plasmas, which demand a relativistic treatment.

A non-quantized electromagnetic field implies that the photon is neglected. In laser technology
the photon flux in most applications is extremely high and the granulation of light beams is of
no importance. It is of significance for metrology, where the lower limit of detectability is partly
given by photon statistics. There are some other effects, which are not covered by the semiclassical
theory:

— Planck’s law, related to photon statistics,
— squeezed states,

— entangled photons,

— zero-point energy effects,

— spontaneous emission,

and some spectral line shifts (Lamb-shift [47Lam]), of minor importance for laser technology,
although of great experimental interest for the confirmation of the fundamental theory. The spon-
taneous emission of excited atoms/molecules is responsible for the lower limit of laser line width
and for the on-set of laser oscillation. Therefore, spontaneous emission has to be
included in the semiclassical theory by a phenomenological term as shown in Fig. 1.1.1.

It is the intention of this chapter to compile the relevant relations of laser dynamics, their
application in laser design and to discuss the limitations and approximations. The mathematical
derivations can be taken from the references.

1.1.1 The laser oscillator

The laser oscillator is based on the principle of the feed-back amplifier, a principle invented by
A. Meissner 1913 and patented 1919 . All coherent electromagnetic waves are generated by
such self-sustained oscillators, from radio frequencies to microwaves and finally lasers. Basov and
Prokhorov published 1954 a theoretical paper on masers [54Bas], Schawlow and Townes in 1958
a theoretical paper discussing the possibility of masers in the visible range of the spectrum,
and Maiman realized 1960 the first laser [60Mail.

Landolt-Bérnstein
New Series VIII/1A1



4 1.1.1 The laser oscillator [Ref. p. 40

Radiation field E
classical field, no photons, Maxwell’s equations, mainly in the SVE-approximation |-g——
of the wave equation

Optical resonator/amplifier

The field interacts with the electronic system (atoms or molecules) inside an optical
resonator or amplifier.

Atoms/ molecules
are approximated by a two-level system, interacting with the field in the dipole
approximation. Schrédinger’s equation delivers a macroscopic polarization P.

Polarization P
is the source of a new coherent electromagnetic field.

self-consistent in steady state

Spontaneous emission
is introduced phenomenologically and produces a stochastic field which is added to
the coherent field.

Fig. 1.1.1. The semiclassical laser theory (SVE-approximation: Slowly Varying Envelope approximation,
see Sect. 1.1.2.2.3).

pump power

- >l | ==

output power

Fig. 1.1.2. Schematic set-up of
a laser oscillator.

G(), V
The principle set-up of a laser oscillator is plotted in Fig. 1.1.2. Light is amplified by induced
emission in an active medium (gas discharge, doped crystals or liquids, pn-transitions). The active
medium is characterized by an intensity- and frequency-dependent gain factor G(J) (with J: inten-
sity). The beam bounces forth and back between the two mirrors of an optical resonator. On-set
of laser oscillation requires a gain factor exceeding the total losses per round trip:

GoRV >1 (threshold condition) (1.1.1)
with

Gy: small-signal gain factor for the intensities,
R = /Ry Ry: average reflection factor of the mirrors,
V. internal loss factor of the resonator.

With increasing intensity J the gain decreases due to saturation of the amplifier
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Ref. p. 40] 1.1 Fundamentals of the semiclassical laser theory 5

G(J)<Gy.
In steady state the gain has to compensate the losses:
G(J)RV =1 (steady-state condition) . (1.1.2)

If the relation G(J) is known, depending on the specific amplifier, (1.1.2) gives the internal
intensity of the laser system in steady state.

The wavelength of the field is determined by the resonance condition. After one round trip the
phase shift Ay of the field must be

Ap=2np, p=1,2,3,... (resonance condition) , (1.1.3)

otherwise the field would be reduced by destructive interference. The resonator is mainly responsible
for the mode structure of the output field and can be described by a non-quantized field. Details
are given in Chap. 8.1. For the interaction field—amplifier a plane wave is assumed and diffraction
is neglected.

1.1.2 The electromagnetic field

Light is a special case of propagating electromagnetic waves, as was predicted by Maxwell 1856
and confirmed experimentally by Hertz [88Her]. The electromagnetic field is characterized
by the electric/magnetic vector fields E, H. In this section the propagation of quasi-monochromatic
waves with frequency w and wavelength X is investigated. The wavelength range from the infrared
(A = some 10 pym) to the UV (A = 0.1 pm) is normally called light.

1.1.2.1 Maxwell’s equations

The electromagnetic field is used in the classical representation, neglecting the quantization. The
materials equations, based on guantum mechanics, are introduced phenomenologically. The final
result is a wave equation, describing the propagation of electromagnetic waves.

The classical electromagnetic field is completely described by Maxwell’s equations:

OB
|E=——— 1.14
cur 5 ( )
oD .
curl H = E—'_J , (1.1.5)
divD =p, (1.1.6)
div B =0 (1.1.7)

with

E: electric field (SI-unit: V/m),

H: magnetic field (ST-unit: A/m),

D: electric displacement (SI-unit: As/m?),

B: magnetic induction (SI-unit: Vs/m?),

j: current density (SI-unit: A/m?),

p: density of electric charges (SI-unit: As/m3).
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6 1.1.2 The electromagnetic field [Ref. p. 40

For all quantities the complex notation is used , the real quantities are Q,ea1 = %(Q—l—Q*)
The relations between D, E and B, H are given by the material equations. Under the action of
an external electric/magnetic field atomic or molecular electric/magnetic dipoles are generated in
matter. The dipole moment per unit volume is called the electric or magnetic polarization P(E, H)
or J(E, H), respectively. The resulting material quantities are the electric displacement D and
the magnetic induction B given as:

D=¢E+PEH)=¢ce(E,H) E, (1.1.8)
B=uyH+JEH)=puE H)-H (1.1.9)
with

P =¢yx.(E, H)E : electric polarization (SI-unit: As/m?),
J = poxm(E, H)H : magnetic polarization (SI-unit: Vs/m?),
Xe(E, H), xm(E,H) : electric/magnetic susceptibility, in general a tensor and a function of

the fields,
€ =14 Xe, # = 1 + Xm : permittivity /permeability number, in general tensors, 1: unit tensor,

g0 = 8.8542 x 10712 As/Vm: electric constant,
o = 47t x 107 Vs/Am: magnetic constant.

The current inside a medium is caused by the electric field and Ohm’s law holds
j=o.FE (1.1.10)

with
oe: electric conductivity, in general a tensor and function of the field, (SI-unit: A/Vm).

Electric and magnetic polarization depend in general on both generating fields, E and H. In
many cases this relation is linear, but quite often a very complicated relation occurs, as in non-
linear optics, ferro-magnetism or ferro-electricity. The material equations can only be evaluated
by quantum mechanics. In the following non-conducting (o, = 0), charge-free (p = 0) and non-
magnetic (xm = 0, # = 1) media are assumed, which holds for dielectrics. The magnetic field can
be eliminated and a wave equation results from Maxwell’s equations:

. 1 02 1
grad leE*AE‘F%@ (EJrEOP) =0, (1.1.11)
divD =0 (1.1.12)
with
co = 2.99792458 x 10® m/s : vacuum velocity of light .

EoMo

Equation (1.1.11) is the fundamental equation, describing the propagation of optical fields. It
includes diffraction as well as amplification of light and non-linear effects. It has now to be adapted
and simplified for the different applications in optics and laser technology.

1.1.2.2 Homogeneous, isotropic, linear dielectrics

The propagation of light in homogeneous media as gases, liquids, glasses or cubic crystals is in-
vestigated. These materials are assumed to be homogeneous (permittivity  does not depend on the
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Ref. p. 40] 1.1 Fundamentals of the semiclassical laser theory 7

spatial coordinates), isotropic (¢ does not depend on the polarization of light), and linear (¢ does
not depend on the intensity of the field). The last assumption holds for low-intensity fields only.

The permittivity € is a scalar and (1.1.11)/(1.1.12) reduces to the standard wave equation:

¢ O’°F
AE—%W—O, (1.1.13)

divE=0. (1.1.14)

Simple solutions are the plane and the spherical waves.

1.1.2.2.1 The plane wave

The infinite, monochromatic wave with a plane phase front and constant amplitude reads:

E = E expli(wt — nkor)] , (1.1.15)
H = H, expli(wt — nkor)] ; (1.1.16)
[ko X lgd
H, = Zox 2ol
0 koZ

It is a transversely polarized field with E 1 H 1 kg, as plotted in Fig. 1.1.3.
n=+e=1+/14xe : the refractive index of the medium, in general complex, (1.1.17)

ko = 21/ A : wave number in vacuum,
kq: wave vector, direction of propagation,
Ao: wavelength in vacuum,

Z = 1/M :  impedance, Zy= Ho _ 3767 Q: vacuum impedance.
€€ €0

The Poynting vector or energy flux is a real quantity with

S = [Ercal X Hycal]  (ST-unit: W/m2).

Fig. 1.1.3. The plane wave in a homogeneous,
isotropic medium.
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8 1.1.2 The electromagnetic field [Ref. p. 40

Table 1.1.1. Values of refractive index n, and absorption coefficient o at wavelength Ao [85Pall ,
78Dril.

Material Ao [pm] Ny a [m™]
Fused quartz 0.54 1.46 very small
Sapphire 0.50 1.765/1.764 very small
Water 0.54 1.332 0.8

Water 1 1.328 80
Copper 0.54 0.7 11.6 x 10°
Gold 0.54 0.3 11.1 x 10°
Iron 0.54 2.4 16.4 x 10°

The intensity is the time average over one period T' = 27t/w and results in:

J=(S)p = i (; + Zl> (EoE}) . (1.1.18)

For dielectrics without losses (¢ = 1, n = n, is real), (1.1.18) reduces to
1 2
J = §Conr€0 |E0| (1.1.19)

with both quantities, Fy and J, inside the medium. For vacuum applies

Jwme = 133 % 1072 | Eg vym|” s |Eovym| = 274/ Jew jme -

For a homogeneous dielectric, low-absorbing medium the complex refractive index is given by

[99Bor} p. 739]:

@
n=mn, —i— a<k 1.1.20
T 2k 0 ( )
with

n,: real part of the refractive index,

«: absorption coefficient, in general the non-resonant broad-band absorption.

For a field propagating in z-direction (1.1.15)/(1.1.20) deliver an exponentially damped ampli-
tude:
E(z,t) = Eq exp |i(wt — nekgz) — %}

Some numbers of n,, o are compiled in Table 1.1.1.

(1.1.21)

1.1.2.2.2 The spherical wave
One solution of the wave equation (1.1.13) in spherical coordinates is the quasi-spherical wave,
generated by an oscillating dipole (Hertz’s dipole), see Fig. 1.1.4. The far field reads [99Jad|:

4k
exp [i (wt — nkor)]sind , |Ey|= m‘eﬁ , > Ao
0

E(r,9,t) = MoEBy
'

with p the dipole moment and ¢ the angle between the dipole axis and beam propagation k.
In the paraxial approach (9 = 7t/2 , 0 <« 1) the well-known spherical wave, useful for applying
Huygens’ principle, results:

E(z,t) = % Epexpli(wt —nker)] , 6«1, (1.1.22)

where F is approximately parallel to the dipole axis.
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Fig. 1.1.4. A quasi-spherical wave, emitted by an
oscillating dipole.

1.1.2.2.3 The slowly varying envelope (SVE) approximation

In the Slowly Varying Envelope approximation (1.1.11) is solved approximately with the ansatz of
a quasi-monochromatic, quasi-plane wave

E = Ey(z,y, z,t) expli(wt — nykoz)], P = Py(z,y, 2 t)expli(wt —n.koz)] . (1.1.23)

The wave propagates mainly in z-direction and the amplitude is slowly varying with z, y, z, t,
which means:

— slowly varying in time (quasi-monochromatic): 9|Eg|/0t < w|Ey|, or spectral bandwidth
Aw < w,

— slowly varying in space (quasi-plane wave): 9| E|/0z < ko|Eg|, which means low divergence of
the beam Af <« 1 (paraxial approach), and a smooth transverse profile,

— slowly varying polarization 0| Pg|/0t < w|Py,

— slowly varying electric susceptibility 0|x.|/0t < w|xe| and |grad x.| < kol|xel-

Then second order terms can be neglected and the SVE-approximations are obtained [84She} p. 47],

|66 War] [86Sie].
1.1.2.2.4 The SVE-approximation for diffraction
Steady-state propagation in vacuum means 0|Ey|/0t = 0 and P = 0. Equation (1.1.11) delivers

with the ansatz (1.1.23) and neglecting 9% E /0t? the SVE-approximation used in diffraction theory,
also called the Schrodinger equation of optics:

0
<Atr — 2ikoa> Ey=0, divE=0. (1.1.24a)
z
Ay, is the transverse delta-operator, which in rectangular coordinates reads
0? 02
Ay = =5+ =—5 .
" 9a2 + Oy?

The field in (1.1.24a) is a vector field, and the A-operator in cylinder coordinates is rather
complicated, because the unit-vectors are no longer constant [99Jac], especially for non-uniform
polarization in circular birefringent media 82Fer|, 93Wit|. In most cases (except birefringence) the
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10 1.1.2 The electromagnetic field [Ref. p. 40

scalar version of the SVE-approximation is sufficient. It reads in rectangular/cylindrical coordi-
nates

02 0? 0

9 L9 e 9\ = 1.1.24
(525 + 30z~ 2oy ) Bo =0, (1.1.24D)
02 10 1 02 0

o9 P 5 YYE 1.1.24
(5‘r2 +rar+r2 0p? lkoaz) 0=0 ( ©

This is the fundamental equation in paraxial diffraction optics. It gives the Fresnel-integral and
the eigenmodes of free propagation (Gauss-Hermite/Gauss-Laguerre polynomials, see Chaps. 3.1
and 8.1). Equations (1.1.24a)/(1.1.24b)/(1.1.24c) hold for a homogeneous medium, but can be
extended to quadratic index media

1.1.2.3 Propagation in doped media

The active medium of a laser amplifier consists of a host material, doped with the active atoms
(molecules). Host and doping interact di erently with the laser radiation.

A plane wave without transverse structure interacts with active atoms or molecules and induces a
polarization P 4. In most cases the active atoms are embedded in a host medium (glass, crystal,
liquid, gas), which is also polarized by the field, generating an additional polarization Py. The
total polarization is:

P =P+ Py = (Pao + Puo) expli(wt — nrkoz)] . (1.1.25)

The response of the host medium is in most cases very fast (10712 ... 107! s), no transient
behavior occurs and nonlinear effects are assumed to be small. Then the host polarization is
proportional to the applied field:

Py =¢oxunk .

xu is the complex susceptibility of the host material and is related to the refractive index n, and
the loss coefficient o according to (1.1.17)/(1.1.20) [99Ber]:

= (n2—1)—i TZ“ L a<k. (1.1.26)
0

The imaginary part of g is called extinction coefficient. Some values of refractive indices n, and
absorption coefficients « are given in Table 1.1.1. For the polarization of the active atoms one has

Py =coxa(Eo)E, (1.1.27)

where ya depends on the field and has to be evaluated quantum-mechanically. Neglecting first and
second order derivations of Pay and second order derivations of Eq, the SVE-approximation for
the interaction is obtained, assuming a plane wave without transverse structure:

5 18 « ko
I T N N Py (E div E = 1.1.2
(82+08t+2) 0= g D0 (Bo) v E=0 S

(SVE-approximation for the amplitude of a plane wave in an active medium)

with ¢ = ¢p/n, the phase velocity of the wave in the host medium. The above equation describes
the amplification/attenuation of cw-fields and pulsed radiation by an active medium. It provides
also the widely used rate-equation approach, as will be shown in Sect. 1.1.5.1. It fails for fields

Landolt-Bérnstein
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Ref. p. 40] 1.1 Fundamentals of the semiclassical laser theory 11

with amplitudes varying very rapidly in time or space (fs-pulses). If the intensity J (1.1.19) and
the susceptibility of the active medium (1.1.27) are introduced, (1.1.28) reduces to:

0 10 ko
Z 42\ N | J=0. 1.1.29
<82+cat> * <a Ny XA ( )

The active atoms enhance or reduce the losses of the medium, depending on the sign of the
imaginary part Im y of the susceptibility, which is a function of the intensity. In steady state and

for constant ya, which holds for low intensities, (1.1.29) can be integrated and delivers for the
intensity

J(2) = J(0) exp {—oz + %Im (XA)} 2.

The amplifying factor is called the small-signal gain factor Gy of the medium and the exponent
the small-signal gain coefficient go:

ko

ki
Go = exp {no Im(XA)z] =explgoz] , go= o Im (xa) - (1.1.30)

Some typical values of gy are compiled in Table 1.1.4.

1.1.3 Interaction with two-level systems

Most quantum systems as atoms or molecules have an infinite number of energy levels. To demon-
strate the essential features of light—-matter interaction, a simplified model with only two levels is
presented.

1.1.3.1 The two-level system

The relevant parameters are the energy di erence AE of the two levels, the inversion An, the
dipole moment p, and the polarization P,.

The two-level system can be part of an atom, ion, molecule, or something more complicated. A
monochromatic electric field E of frequency w in the SVE-approximation according to (1.1.23) acts
via the Coulomb force on the bound electrons of the active medium. In linear systems (parabolic
potential) the negative electrons will oscillate sinusoidally, whereas the heavy positive nucleus
remains more or less at rest. An oscillating dipole is induced with a dipole moment p(t), which is
given by

u=—ex (1.1.31)

with

e: electron charge,
x: displacement of the electron.

The dipole moment per volume is the macroscopic polarization P of the active medium. As
all single dipoles are aligned by the electric field, the resulting polarization reads:
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12 1.1.3 Interaction with two-level systems [Ref. p. 40

A

4 E2 — ], ¢2> , Cy
w
>
S
GC) h W
L

A 4
£ E1 — n,, ¢I> , C4
Fig. 1.1.5. The two-level system.
Pa =nop (1.1.32)
with

no: dipole density (m~3),
w: expectation value of the dipole moment (Asm).

In this section the induced dipole moment will be evaluated quantum-mechanically, which
requires some simplifications. It is not the intention to discuss in detail the mathematics, but
only to summarize briefly the main results of interest for laser technology and to emphasize the
approximations and the range of validity. A consistent presentation of the interaction light—matter,
starting from first principles, is given in many textbooks |[61Mes) [68Sch| [77Cohl [95Man].

From the infinite number of energy levels of an electronic system only two, E; and FEs, are
taken into account for the interaction [75Alll [89Yar] |69Are|, see Fig. 1.1.5. This is a reasonable
approach if the field is nearly resonant with the transition from F; to FEs. In this case the other
levels of the system will not or only very weakly interact with the field.

It applies

|wA — w| < Awp

with
wa: resonance frequency of the transition,
Awya: bandwidth of the transition,

w: frequency of the radiation field,
h = 1.0546 x 1073* Ws?: Planck’s constant.

1.1.3.2 The dipole approximation

The oscillating electric field E deforms the electron cloud of the two-level system and generates
a complicated, oscillating charge distribution. A first order approximation is an oscillating dipole.
The interaction of this dipole with a monochromatic wave is evaluated quantum-mechanically.

1.1.3.2.1 Inversion density and polarization

The interaction of an electromagnetic field with a two-level system was first investigated by Bloch
[46Blo] and extensively discussed by Allen and Eberly [75All]. It is characterized by its dipole
moment and the population densities in the two levels:
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n1, ny : density of states (atoms, molecules) in the lower/upper level,
An = ng — ny : inversion density,
ng = ni + ng : total density, const.

The following assumptions are made:

— Non-relativistic interaction. The velocity of the electrons is small compared with the velocity
of light. This does not hold for inner-shell electrons, hot plasmas and free-electron lasers.

— The wavelength of the light is large compared with the diameter of the atoms/molecules. It
means that in the domain of the atomic wave function the electromagnetic field is locally
constant. Bohr’s radius with rg = 5.3 x 10™° pm is a typical atomic dimension. The wavelength
in the visible range of the spectrum is about 0.5 um, thus this condition is fulfilled in the visible
and UV-part of the spectrum. It is called the dipole approximation .

— The permanent dipole moments of the two-level system p1; = oo are zero. Even if larger
molecules have a permanent dipole moment, their response to the high-frequency field is small.
Ounly for very strong fields are the permanent dipole moments of importance (see Part 4 on
nonlinear optics). A dipole moment exists only for the transition from level 1 to 2 and vice
versa. Non-degenerated levels are assumed with g = p12 = po3.

The two-level system is completely described by its state vector |¢), which in general is time-
dependent:

Eqt

) =ca(®)lon) exp (=1 500) + cat) o) exp (i) (1139

with |¢1), |¢2) the eigenfunctions and Fy, Fs the energy eigenstates. The eigenfunctions are nor-
malized, orthogonal and depend on the position vector r:

/@f%‘dr = (p1p2) = dij - (1.1.34)
The state vector has to fulfill the time-dependent Schrodinger equation:

0
lh# = (Ho+ Hint) |<p> , (1.1.35)

with Hy the Hamilton operator of the undisturbed system (Hi,, = 0) and Hi, the interaction
energy. For the undisturbed system holds [89Yar]:

Holgi) = Eilgi) , i=1,2, (1.1.36)

which follows directly from (1.1.35) by replacing |¢) by |¢i)exp (—iE;t/h). The parameters of
interest, the inversion density An = ny — ny and the macroscopic polarization

Pxr=nop (1.1.37)

are determined by the coefficients ¢1, c2. The probability of the system to be in the lower/upper
state is given by \cl|2 , |02|2 , respectively, which requires:

ler? 4+ ea? = 1. (1.1.38)
The number of atoms in the lower/upper level is then given by:

2 2
ny=mnolel|”, na=mngle|”, ni+ng=mng

and hence the inversion density :
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14 1.1.3 Interaction with two-level systems [Ref. p. 40

An = ng (\02\2 - \01\2) . (1.1.39)

The expectation value of the dipole moment (p) = —e (pr¢p) is obtained from (1.1.33). Using
the afore mentioned assumptions:

(m11) = —e{p1r1) =0,  (H22) = —e{@arps) =0
one obtains finally for the polarization from (1.1.33), (1.1.34), (1.1.38)
Py =ng{(p12) cjeco exp (—iwat) + (p21) c1¢5 exp (+iwat)} (1.1.40)

with (p12), (to1) the dipole moment of the transition Ey <+ E3 and vice versa. For non-degenerated
transitions one has (p12) = (1) = pa. In the following only pa will be used, which is a charac-
teristic parameter of the specific transition:

pa = —e{p17rpa) . (1.1.41)

1.1.3.2.2 The interaction with a monochromatic field

The interaction Hamiltonian for a non-quantized real field E .., corresponds to the classical energy
of an electric dipole in an electric field. It reads [97Scul:
(E+ E¥)

— -

Substitution of (1.1.42) into (1.1.35), using the orthogonality (1.1.34) and (1.1.41) provides two
differential equations for the coefficients ¢y, co of the state vector:

Hint = NAEreal = KA (1142)

d i E + FE*
d i E+ FE*
g = %cl exp (+iwat) NA% . (1.1.43)

The time dependence of inversion density and polarization is obtained from (1.1.39), (1.1.40) by
differentiating and applying (1.1.43). After some simple mathematics the following two equations
for the macroscopic parameters of the two-level-system result are obtained:

OAn i . y
aPA s HA *
= l{wAPA + 5 (ua (B + BY)) An} . (1.1.44b)

For E and P, the SVE-approximations of (1.1.23), (1.1.25) are used. Then in (1.1.44a),
(1.1.44b) terms with the frequency 2w appear, which are neglected. This approach is called the
rotating-wave approximation [97Scul [72Cou|. The above equations simplify to

0An i . .
o = Th{EoPAO*EOPAO} , (1.1.45a)
p .
88:0 - —icSPAOJrWTA(uAEo}An, §=w—wa (1.1.45b)
(rotating-wave approximation)

with

pa: electric dipole moment of the transition,

w: frequency of the interacting field,

wa: resonance frequency of the two-level system,
h = 1.0546 x 10~3* Ws?: Planck’s constant.

Some typical values of dipole moments are given in Table 1.1.2.
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Table 1.1.2. Typical values of dipole moments [01Men]|.

Transition lpal [As m]
Bohr’s radius x electron charge 1072°
Hydrogen 1s — 2p Ao =121 nm 0.8 x107%°
4f — 5g o = 4053 nm 8.3 x 1072
Chromium ions in ruby 4A,(3/2) — E levels Ao = 694 nm 10720

1.1.3.3 The Maxwell-Bloch equations

The idealized rotating-wave approximation is adapted to the real situation and combined with the
SVE wave equation. Incoherent perturbations by the environment are taken into account.

So far the interaction of the two-level system with the electromagnetic field is purely coherent, no
perturbations by external influences on the system are considered. Stochastic processes will modify
the interaction considerably. Here only a very basic description is presented. A detailed analysis of

these statistical processes is given in [70Hakl [97Scul.

1.1.3.3.1 Decay time T of the upper level (energy relaxation)

Three incoherent processes reduce or increase the upper-level population and have to be considered
in (1.1.45a), (1.1.45b):

— spontaneous emission,
— interaction with the host material (collisions, lattice vibrations),
— increase of the population by pumping (light, electron collisions, or other processes).

1.1.3.3.1.1 Spontaneous emission

The two-level system is coupled to the modes of the optical resonator or to the free-space modes.
Spontaneous emission into these modes reduces the upper-level population. Moreover, by each
spontaneous emission process the phase relation between the field and the two-level eigenfunction
is destroyed. If the dimensions of the resonator are large compared with the wavelength, the decay
is given by Ong /0t = —ng /Ty, , with Agy = 1/Ty, , the Einstein coefficient of spontaneous emission.
If the resonator dimensions are comparable with the wavelength, spontaneous emission is strongly
influenced by the resonator geometry, it can be enhanced or reduced (see Chap. 8.1).

1.1.3.3.1.2 Interaction with the host material

This interaction reduces the population density. Energy is transferred to the host material
and converted into heat. A simple approach for this decay is again an exponential ansatz
Ong /0t = —ng /Ty . This decay time together with the spontaneous decay time delivers a re-
sulting decay T3 of the upper-level population, also called energy relaxation time or longitudinal
relaxation time.
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16 1.1.3 Interaction with two-level systems [Ref. p. 40

1.1.3.3.1.3 Pumping process

The dynamics of upper-level excitation depend on the special pumping scheme and are discussed
in Sect. 1.1.5.3 and in Vol. VIII/1B, “Solid-state laser systems”. In any case the pump produces
in steady state and without a coherent field (Ey = 0) an inversion density Ang.

These three processes are included into (1.1.45a) by the term:

O0An _ An — Ang

o = T (1.1.46)

with

T7: the resulting time constant.

1.1.3.3.2 Decay time T, of the polarization (entropy relaxation)

An external field F induces dipoles, which generate the macroscopic polarization P 4. If the external
field is switched off, the polarization will disappear for several reasons:

The energy of the two-level system decays with 77, which means that the polarization disappears
at least with the same time constant.

Due to incoherent interaction with the host material (collisions), the single dipoles are disori-
ented in their direction or dephased. The resulting polarization becomes zero, although the single
dipole still exists. This process can be much faster than T; (see Table 1.1.6) and is characterized by
a time constant 75. This decay strongly depends on the interaction process. The simplest approach
is :

OPro _ Pao
ot T

(1.1.47)

and (1.1.45b) has to be completed by (1.1.47). Ty is called the transverse relaxation time, the
entropy time constant or the dephasing time. Finally, the two-level equations together with the
SVE-approximation, (1.1.28), of the wave equation read:

0An i . . An — Ang
W = 7% (EOPAO — EOPAO> — T ; (1148&)
OP o . 1 A (uaEp)
= — — | P — X A =w — 1.1.4
5t <1(5+T2> A0 +1 - n, d=w-—wa, ( 8b)
a 1 8 « . k()
— + -4+ = | Eyg=— P 1.1.4
<8z * c ot * 2) 0 126071r A0 ( 8¢)

(Maxwell-Bloch equations).

They describe the propagation of radiation in two-level systems and are called Maxwell-Bloch
equations. Equation (1.1.48c¢) holds, if the transition frequency wa for all two-level atoms is the
same (homogeneous system). In inhomogeneous systems (see Sect. 1.1.6.3, Fig. 1.1.13) different
groups of atoms exist with center frequencies wp of each group and a center frequency wg of the
ensemble. Therefore (1.1.48¢) has to be replaced by [81Ver|:

a 10 . ko
(82: + c&t) Ey = o /h(wA,WR)PAO(EO,WA)de : (1.1.48d)

h(w,wa) is the spectral density of atoms with the transition frequency wa according to (1.1.92)/
(1.1.93). For the solution of these equations, three different regimes are distinguished:
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Steady-state equations
0An 0P ap

The temporal variations of the radiation field are slow — =0 =0
. ot ot
compared with T7.
Adiabatic equations
0A oP
no transient effects of the atom, Tb < T7. a—tn #0 TAO =0
Coherent equations
A P
The width 7 of the interacting pulses is short compared aa—tn 9 (‘3:0 #0

with Ty, T; (1.1.45a), (1.1.45b) can be applied.

1.1.4 Steady-state solutions

In steady state inversion density Ang, polarization P g, and intensity J of the field are constant
in time, but may depend on the spatial coordinates.

1.1.4.1 Inversion density and polarization

The stationary solutions of (1.1.48a), (1.1.48b) are obtained immediately:

Ano . R -
An=——————— (inversion density, homogeneously broadened), 1.1.49
neo [w—wa . -
= A susceptibilit 1.1.50
Xa = {AwA/Q—i_l] n (susceptibility), (1.1.50)
Pao =ceoxaEo (polarization) (1.1.51)
with
1
J= B gocone|Eo|*> (intensity of the field), (1.1.52)
hwa .. . "

s = (saturation intensity of the two-level transition), (1.1.53)

20'QT1
o =o0of(w,wa) (frequency-dependent cross section of the transition), (1.1.54)

| pal®waTo
09p = ————— (cross section in resonance), (1.1.55)
goConch
Awy /2)?
frlw,wa) = ( ;)A/ ) 5 (spectral line shape, Lorentzian), (1.1.56)
(wa —w)” 4+ (Awa /2)

Awp =2/T>  (line width of the transition), (1.1.57)
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Angoof(w,wa)
1+ (J/Js) f(w,wa)

gh(w,wa) =Ano = (gain coeflicient, homogeneously

broadened),
A ngog Aw

A
ginh(wa WR) = \/ﬁh(w, wR)T

(gain coefficient, inhomogeneously

broadened, see Sect. 1.1.6.3).

(1.1.58a)

(1.1.58b)

In Table 1.1.3 some numbers of relevant laser transitions are compiled, in Table 1.1.4 some
typical values of the small-signal gain coefficient in resonance are given. The susceptibility strongly
depends on the frequency as shown in Fig. 1.1.6. According to (1.1.26) the real part of xa produces

an additional refractive index, and the imaginary part absorption or amplification:

ReXA:nf—lznrJ (W_WA)ATL7

]410 AwA/Z
Im xya = —nyaky = nrJAn .
ko
The steady-state propagation of the electric field is obtained from (1.1.48c):
dE, a oAn W — WA
= icA E
& {2+2+””AMA]°’

where A n is a function of the field or the intensity.

(1.1.59a)

(1.1.59b)

(1.1.60)

Table 1.1.3. Examples of resonance wavelength Ao, resonance cross section g, upper-level lifetime 77 and
saturation intensity Js. The simple relation (1.1.53) for the saturation intensity holds for two-level systems

only and is not applicable in general .

A() g0 T1 Js

(pm] [m?] [s] [W/m?]
Amplifiers
CO3-gas (1300 Pa) 10.6 10720 107° 2 x 10°
Neodymium-ion in glass 1.06 4 %1072 3x 1074 8...12x 107
Neodymium-ion in YAG 1.06 5x 10723 2x 1074 2 x 107
Chromium-ion in AlyO3 0.69 2x 107 3x1073 2.4 % 107
(ruby, T = 300 K)
Neon (25 Pa) 0.63 3 x 10717 1078 5.3 x 10°
Rhodamine 6G in ethanol 0.57 4% 10720 5x107° 10°
Absorbers
SFe 10.6 8 x 10722 4x107* 2.5 x 10°
KODAK dye 9860 1.06 4 %1072 ~ 1071 5.6 x 10!
KODAK dye 9740 1.06 6 x 10720 ~ 1071 4 x 101
Cryptocyanine-dye 0.7 5x 10720 5x 10710 2 x 10*°

in methanol

Table 1.1.4. Typical values of the small-signal gain coefficient go = Anooo in resonance. The exact values

depend on pumping, doping, and other parameters of operation [01Men|.

System Ao [nm)] go [m™1]
He/Ne laser 632.8 0.1
Nd-doped glass 1060 5
Nd-doped YAG 1060 50
GaAs-diode 880 4% 10°

Landolt-Bérnstein
New Series VIII/1A1



Ref. p. 40] 1.1 Fundamentals of the semiclassical laser theory 19

/ '\ Imy,~gain

: - Re y,~phase shift
R .0
- / S N .h.-
',.0‘ :. 1 —_—
"...“.' “n Frequency @ Fig. 1.1.6. Real and imaginary part of

the susceptibility vs. frequency.

1.1.4.2 Small-signal solutions

The solutions for low intensities are discussed. Low means that the intensity J is small compared
with the characteristic parameter J; of the system (see Table 1.1.3).

At low intensities J < Js, the inversion density is not affected by the intensity,

An = Ang ,
and (1.1.60) can be integrated. Together with (1.1.23), the complete field is obtained:

E(z) = Ey(0) expli(wt — nikoz) — %(a — Ango)z] (1.1.61)
with a total refractive index n;

oAng w — wa
=n, (1 . 1.1.62
Nt n ( -+ ’r'[,r]{O AWA ) ( 6 )

The active atoms of the two-level system cause an additional phase shift or refractive index
and an additional absorption or amplification, depending on the sign of Ang. The small-signal gain
factor according to (1.1.30)/(1.1.50) is:

Go = explo(w)Angz] . (1.1.63)

Amplification, Gy > 1, requires inversion Ang > 0. The complex amplitude transmission factor A
is defined as the ratio of the monochromatic field amplitudes and can be written:

Eo(Z) ,O‘QAno A(UA/Q

A= = exp |i— @ —on) 1 8wn/2 z.

~ E(0)

(1.1.64)

It depends on the frequency of the field, which means dispersion. Time-dependent fields and espe-
cially short pulses are distorted by the amplifying system, pulse broadening and chirping occur.

1.1.4.3 Strong-signal solutions

The steady-state solutions are discussed for intensities which saturate the inversion, see Fig. 1.1.7.

The inversion now depends on the intensity. For the propagation of the intensity, (1.1.48c) gives
in steady state
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dJ
(gD =a) J 1.1.65
= (g~ a) T, (1.1.65)
where g(J) is the saturated gain coeflicient of (1.1.58a), (1.1.58b). For a homogeneously broadened
transition and without losses (v = 0) this equation can be can be integrated and provides a
transcendental relation for the gain factor G:

Go J(0)

e = exp T fw) (G-1) (1.1.66)

with Gy the small-signal gain factor of (1.1.62) and G the ratio of output/input intensities
G=J(z)/J(0).

For inhomogeneously broadened transitions a more complicated relation is obtained [81Ver].

I [ [ I
0 1 2 3 4

 » JO)s

Fig. 1.1.7. Saturation of the gain factor G for a homogeneously and inhomogeneously broadened transition.
1: G():l, 2: G0:4, 3 GO:6

1.1.5 Adiabatic equations

If the polarization is in equilibrium with the applied field, without transient oscillations of the
electronic system, the interaction is called adiabatic.

1.1.5.1 Rate equations

The field is replaced by the intensity, most spectral e ects are neglected and the rate equations are
obtained. They represent an energy balance.

T is the time constant, which characterizes the transient behavior of the polarization. In most cases
(see Table 1.1.6) T3 is much smaller than T3, and the transient oscillations of the electrons can be
neglected. In (1.1.48a) the polarization is replaced by its steady-state value (1.1.50)/(1.1.51) and
the rate equations are obtained. They have to be completed by the time-dependent pump term, here
labeled as A ng. It depends on the specific pump scheme (see Sect. 1.1.5.3). The rate equations are
widely used in laser design to evaluate output power, spiking behavior and Q-switching dynamics.
The spontaneous emission contributes to the intensity of the interacting field, but only with a very
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small amount and is neglected here. Nevertheless it is important, because the laser is started by
spontaneous emission and in the lower limit it determines the laser band width (Chap. 5.1).

With these approximations the field equations (1.1.48a)/(1.1.48b)/(1.1.48¢c) for the interaction
with a monochromatic field reduce to one equation for the inversion density and a transport
equation for the intensity:

0An  J f(w) (An — Any)

o= An - 7 , (1.1.67)
0 10

(82 + c8t> J=(Anaof(w)) J (1.1.68)

(rate equations for a homogeneously broadened two-level system and a plane monochromatic wave)
with
J(z,t): local intensity,

Js: saturation intensity, depends on the level system (2,3, or 4 levels), see Sects. 1.1.4.1/1.1.5.3,
An(z,t): local inversion density.

1.1.5.2 Thermodynamic considerations

So far the interaction with a monochromatic field of intensity J(w) was discussed. Now the in-
tensity is replaced by the spectral energy density p,, of black-body radiation, providing the Einstein
coe cients of spontaneous and induced emission.

Einstein published in 1917 his famous work on the quantum theory of radiation, where for
the first time induced emission was introduced, the cornerstone of laser physics. He discussed the
two-level system in equilibrium with thermal radiation of spectral energy density p,, (energy per
volume and spectral range dw). The density is given by Planck’s law [61Mor]:

(1.1.69)

hwd 1 [VASQ]
Pu

T n2c exp [hw/kT] — 1 m?

with
k= 1.38 x 10723 VAs/K: Boltzmann’s constant.
In thermal equilibrium the levels |¢1), |¢2) are populated according to Boltzmann’s law [61Mor]:
"2 _ exp[~hwa/KT] . (1.1.70)

ny

These two fundamental laws can only be fulfilled, if induced emission is introduced, and Einstein
postulated the following equation in steady state for the interaction of thermal radiation with a
two-level system:

Bi2 pwni1 = Bai pun2 + Ao n2 (1.1.71)

(absorption = induced emission + spontaneous emission)

with
Bio, Bo1, Asq: Einstein coefficients of induced and spontaneous emission.

The transition of atoms from the lower level to the upper level by absorption of radiation must be
balanced by induced emission and spontaneous emission from the upper level. This equation was
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derived by thermodynamical considerations. The quantum-mechanical equation (1.1.67) delivers
in steady state, replacing An by no — ni and ng by ni + no, and furthermore taking into account

that for steady state without interaction holds Ang = —ng:
o o no
J—n1=J— — 1.1.72
thnl thn2+ Tl ( )

This equation has the same structure as the Einstein equation. If the monochromatic intensity J(w)
is replaced by the spectral density p, and integration over the full spectral range is performed, a
relation between the Einstein coefficients and the atomic parameters is obtained. These relations
read in general for degenerated levels with weighting factors g1, go (degeneracies)
[00Daw]:

2
g2 |pal
By = —/— 1.1.7
27 127 RPeey ( 38)
2
g1 |pal
By = — 1.1.73b
27 121 h2egy ( )
1 a5 s wh
Ay = — == _— 1.1.74
21 T 3 MA| reeohcd ( )
A = H12 = M21 ,
)\2
Ugl(w) = ZAglh(W) s (1175)
o12(w) = Lon(w) (1.1.76)
g1
X T A2
oo (wa)=2-2< 2 (holds for Lorentzian line shape), (1.1.77)
Ar T, = 4
Bi2g1 = B2192 , (1.1.78)
A21 2hwf’\
_ . 1.1.79
B e ( )

The above relations were derived for isotropic media. Anisotropic media are discussed in [86Sie].
Equation (1.1.80) holds for all dipole transitions, as long as the quantum system is coupled to
a large number of modes (free space or a resonator with dimensions large compared with the
wavelength). With these equations the gain coefficient can be related to the Einstein coefficient of
spontaneous emission [92Koe]:
A? g2
9(w) = 7 hw,wa) [na - Z=ny | Ay (1.1.80)
g1
with

h(w,wya): the spectral line shape, depending on the type of broadening (see Sect. 1.1.6).

1.1.5.3 Pumping schemes and complete rate equations

The fundamental methods to obtain inversion are presented, discussing the idealized 3- and 4-level
system.

Till now a two-level system was discussed, assuming a steady-state inversion A ng, which is always
negative. To obtain positive inversion An = ny —n; > 0 and gain, additional levels are necessary.
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An > 0 is a state of non-equilibrium. To support this state, energy has to be pumped into the
system. This pumping energy can be incoherent light, kinetic energy of electrons/ions, chemical
energy or electric energy. The pumping schemes can become very complicated, and in most cases
many energy levels are involved. To understand the principal process for the generation of inversion,
two idealized pumping schemes will be discussed.

1.1.5.3.1 The three-level system

The simplified diagram of the three-level system is shown in Fig. 1.1.8. The level Ej3 is excited by
absorption of light or by electron collisions, depending on the specific system. The decay from Fs
to Es, the upper laser level, is very fast. Nearly all excited atoms are transferred into this level,
which has a very long life time. If the pumping power is sufficiently high to overcome the decay of
level Es, atoms will be accumulated and finally ns is larger than n,. The adiabatic rate equations
give for the upper-level population without induced emission between the two levels (J = 0):

dng
dt

n

=W (ng —ng) — — . (1.1.81)
T

W is the pumping rate, the product of the cross-section 13 and the specific pump parameters. T}

is the upper laser-level lifetime. This holds under the assumption that the population of level Fs

is zero and that n; + ns = ng. Equation (1.1.81) reads with the inversion density An = ny —nq:

dAn ng—An
— =W —Anp)—- ———— 1.1.82
=W g = Am) = P (1.1.82)
and in steady state one obtains:
A Ngtea WT —1
lsteady,3 _ 77 "1 (1.1.83)

no S WTy 41

The relation between the inversion density and the pump rate is shown in Fig. 1.1.9. Inversion
occurs for WTp > 1. With increasing pump rate the inversion increases also and approaches finally
one, all atoms are in the upper level. To obtain A ngteady,3 > 0 requires at least 50 % of the active
atoms to be pumped into the upper level, high pump rates are necessary and the efficiency is low.
Equation (1.1.82) has to be completed by the coherent interaction term of (1.1.67). The complete
rate equation for the three-level system with pump rate W, interacting with a monochromatic field
of intensity J is given in (1.1.84). For the intensity (1.1.48c¢), (1.1.48d) hold, depending on the type
of line-broadening (Sect. 1.1.6).

Three-level system Four-level system
E;, ng=0 E;, ng=0
A
E,, n, \— E,, n,
pump pump laser
laser L e E, n=0
Fo I o= 1y

Fig. 1.1.8. The idealized three- and four-level system.
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Four-level system

steady T~ +1

Three-level system

wrt, —*

-1 -1 Fig. 1.1.9. Inversion density vs. pump
rate for a three- and four-level system.

0An if(w)

_ _ ot An
ot Js Ty

T

An+W(ng—An) (1.1.84)

(rate equation of a three-level system).

1.1.5.3.2 The four-level system

The commonly used pump scheme, due to its high efficiency, is the four-level system as shown in
Fig. 1.1.8. The two laser levels are E5 and E7, where the lower level F; has a very short lifetime
and its population ny is nearly zero. This requires that the energy E; — Ey is much larger than
the thermal energy xT'. The pump level E3 decays very rapidly to the upper laser level Fy and its
population is again nearly zero. The inversion density now is An = ny — ny = ng. Then the rate
equation for the pump process reads:

0An An

with the steady-state solution (without coherent interaction):

A Nsteady,4 _ WTl
no 1+WT

(1.1.86)

Inversion is reached now at very small pump-power levels as shown in Fig. 1.1.9. The efficiency of
such systems is much higher than of three-level systems. The complete rate equation for pumping
and interaction with a field of intensity J is obtained by taking into account the corresponding
term of (1.1.67). It has to be considered that ny; = 0, and therefore the saturation intensity is
higher by a factor of 2.

oAn __J f(w)An +W(ng—An) — an (1.1.87)

ot Ja T

(rate equation of a four-level system)
with

h
Js4: “A

)

saturation intensity of the four-level system.
OoTl
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1.1.5.4 Adiabatic pulse amplification

The amplification and shaping of light pulses by saturable two-level systems is presented.

The pulse is adiabatic if its width 7 is small compared with T} and large compared with T5. Then
the variation of the upper-level population due to spontaneous emission and pump can be neglected
and this term can be neglected. If such a pulse travels through an active medium of length ¢, it
depletes the upper level, is amplified and shaped as depicted in Fig. 1.1.10. The initial conditions
at t = —oo are:

Inversion density: An(z) =Ang, 0<z<1?.
Input intensity: Jo z=0.
Input energy: E, z=0.

The equations (1.1.67)/(1.1.68) can be solved for a loss-free-medium (« = 0) with a four-level
system and yield for the output intensity [63Fral:

Jout (t) = Jin(t — £/c) Go p— (1.1.88)
Go — (Go — 1) exp fEis / Jin (¢")dt’
The total output energy density E,,t of the pulse is
Eout = Estn[l + Go (exp (Ein/Es) — 1)] (1.1.89)
with the two limiting cases
GoEiy , E, < E;,
oue = { B + B fnGy = By, + 2M050es g5 g (1.1.90)

with

Gy : small-signal gain factor, (1.1.63),
Ey = Js 4T : saturation energy density,
Ein out : Input/output energy density.

Equations (1.1.88)—(1.1.90) also hold for saturable absorbers with Gy < 1. The pulse will be
shaped in any case and the peak velocity will differ from the phase- and group velocities.

GyJ:
J 0vin
J out
input pulse J;, output pulse J,(t)
Jin amplifier 4
absorber— "
— T—> ]
0 Fig. 1.1.10. Pulse amplification
¢ and shaping by a saturable ampli-

fier /absorber.
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1.1.5.5 Rate equations for steady-state laser oscillators

In the oscillator system, two counter-propagating traveling waves J+, J~ appear, see Fig. 1.1.11,
which are amplified by an intensity- and z-dependent gain coefficient according to (1.1.58a),
(1.1.58b):

dJ+

o= [g(J) —a] J*T, (1.1.91a)
% =—[9(J)—a] J~. (1.1.91b)

For the two traveling waves the boundary conditions at the mirrors are:
Jt(z=0)=J (z=0)R; ,

J (z=0)=J"(2=0R,.
The combination of (1.1.91a) and (1.1.91b) yields [81Ver]:

JT(2)J~(2) = const. ,

a useful relation for analytical solutions. The gain coefficient is saturated by both waves. In steady
state (1.1.84)/(1.1.87) hold with J = J™ + J~, depending on the level system and on the type
of broadening. For homogeneous broadening a solution is given in n general, numerical
calculations are necessary. For optimization a diagram is offered in [92Koe]. The intensity rate
equations are very useful for laser design and optimization, but deliver no spectral effects such as
line width [58Schl [74Sar] [95Man|, mode competition [86Siel [00Dav], mode hopping
74Sar|, or intensity-dependent frequency shifts (Lamb dip) 64Lam|. Multimode oscillation can be
described by rate equations with restrictions 164Stal (63 Tan) 93Sve].

. Mirror R, Mirror R,
= %/ :%@VA = Jouz
mh————— V- it wo souner propagaing
z

waves.

1.1.6 Line shape and line broadening

Shape and width of the spectral response of the two-level system depend on the special stochastic
perturbation processes, in detail discussed by [81Ver] [86Eas]. An easy-to-read introduction is given
by [86Sie, 00Dav].
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1.1.6.1 Normalized shape functions

Normalized line shapes are introduced, which determine the relative strength of interaction.

The line shape depends on the specific interaction process. Two standard line shapes, easy to
handle, are the Lorentzian and the Gaussian profiles [92Koe|, shown in Fig. 1.1.12. They can be
normalized differently.

.. Gaussian
/ L?ntzian

-4 4
0— Wy
Fig. 1.1.12. Gaussian and
Aw S
Lorentzian line shape.
1.1.6.1.1 Lorentzian line shape
(Awa/2)”
W, wa) = , hr(w,wp) = w,wa) . 1.1.92
fu(w,wa) PRI Lw,wa) = A fulw,wa) (1.1.92)
1.1.6.1.2 Gaussian line shape
W — WA 2 In2 2
= — In2 h =4/— . 1.1.
fo(w) =exp (AwA/2> n 1 , c(w) =14/ - AwAfG(w) (1.1.93)
1.1.6.1.3 Normalization of line shapes
+o0o
fG,L(w =wp)=1, fG7L(w =wpa +Awp/2) =05, / hG7L(w,wA)dw =1. (1.1.94)
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1.1.6.2 Mechanisms of line broadening

1.1.6.2.1 Spontaneous emission

The spontaneous emission decay time T, of quantum dot lasers can be influenced by the geometry
, but for all macroscopic laser systems it is equal to the free-atom decay and related to the
dipole moment (see Sect. 1.1.5.2). The line width of the power spectrum is Aw = 1/T, . The line
shape is Lorentzian for undisturbed systems.

1.1.6.2.2 Doppler broadening

In thermal equilibrium the particles in a gas have a Maxwellian velocity distribution of the veloc-
ity o:

h(v) = \/E exp {—W] (1.1.95)

with

my : atomic mass,
kT : thermal energy of the particles.

The resonance frequency of a transition is shifted by the Doppler effect
Aw=warv/cy .

Replacing the velocity in (1.1.76) by the frequency, delivers for the resulting spectral distribution
a Gaussian line shape (1.1.74) with the width

A 8 kT In 2
b 2 (1.1.96)
WA macC

Some numbers are compiled in Table 1.1.5.

Table 1.1.5. Doppler and collision broadening for a thermal energy of KT = 1 eV. The Doppler broadening
refers to wa = 10'® s™', the collision broadening holds for a pressure of p = 133 Pa (1 torr) [81Verl [01Men].

Gas Doppler broadening Collision broadening
Awp [10" 571 Awc [107 s7Y

Ho 5.6 2.8

He 4 1.3

Ne 1.8 0.8

CO2 1.2 1.2

Ar 1.5 9

1.1.6.2.3 Collision or pressure broadening

Elastic collisions between radiating atoms imply no energy loss, but a discontinuous jump in the
phase of the emitted field. The average temporal length of the wave trains, in the undisturbed case
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given by the spontaneous life time Ty, is reduced to the collision time 7. The Fourier transform
of these shortened waves gives a Lorentzian line shape with the spectral width Awe = 2/7 or

320cp
Awc = ——— 1.1.97
¢ VTTMA w1 ( )
with

oc : collision cross section of the atom,
p: pressure of the gas.

The collision broadening is proportional to the gas pressure. Some numbers are given in Table 1.1.5.

1.1.6.2.4 Saturation broadening

A strong field of intensity J, comparable with the saturation intensity J, depletes the upper laser
level. The gain is reduced according to (1.1.58a), (1.1.58b) and the gain profile becomes flatter and
broader with the spectral width (see Fig. 1.1.13) [81Ver]:

Awg ZAu}A\/l—‘rJ/JS.

1.1.6.3 Types of broadening

The interaction of the field depends strongly on the type of broadening. Two idealized cases are
the homogeneous and the inhomogeneous broadening [00Dav].

1.1.6.3.1 Homogeneous broadening

All transitions have the same resonance frequency wa. The gain is saturated for all atoms in the
same way as given by (1.1.58a) and shown in Fig. 1.1.13. Examples for this type of broadening are:

— spontaneous emission,

— collision broadening,

— saturation broadening,

— thermal broadening in crystals by interaction with the lattice vibrations.

g(w)
Homogeneously Inhomogeneously

1
0 wg

A

Frequency of the radiation field @

Fig. 1.1.13. Saturation of homogeneously and inhomogeneously broadened systems by a radiation field
of frequency w.
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1.1.6.3.2 Inhomogeneous broadening

Groups of atoms with spectral density h(wgr,wa) and different frequencies wa produce a resulting
line profile with center frequency wr and width A wg as shown in Fig. 1.1.14. A strong monochro-
matic field of frequency w interacts mainly with the group ws = w and saturates this particular
group. A dip appears in the profile, which is called spectral hole-burning. Examples of inhomoge-
neous broadening are:

— Doppler broadening,
— Stark broadening in crystals due to statistical local crystalline fields.

Wp  OR
—_—

Frequency o

Fig. 1.1.14. An inhomogeneously broadened profile.

The resulting line profile is a convolution of the individual group profiles and the broadening pro-
cess, which results in complicated integrals. The saturation process for inhomogeneously broadened
lines is quite different, as will be shown by a simple example. In this case (1.1.58a) holds only for
one group of atoms with the spectral density h(wa,wr). Integration over all groups results in the
total gain coefficient gjp:

+oo
Yinh (W, wR) = / fw,wa)h(wa,wr)dwa (1.1.98)
—00
If the width A w, is much smaller than the total width Awg, the function h(wa,wr) can be taken

outside of the integral at wa = w. Assuming a Lorentzian profile for the single group, (1.1.98)
becomes:

f(wawA)
inh (W) = Angogh(w,w / w
) = Anogohlron) [ 407 Flaran) T4
and can be integrated:
AN0T0_ b ) TOWA _ 21000 ¢ NAWA (1.1.99)

inh (W) = —F——=
G () NI 2 VI+J/J " Awr

The gain saturates slower than in the case of homogeneous broadening, but the maximum gain
is lower by the ratio of the line widths. Inhomogeneous gain profiles can also be caused by spatial
hole burning in solid-state laser systems. The standing waves between the mirrors produce an
inversion grating and holes in the spectral gain profile .

The spectral characteristics of lasers depend strongly on the type of broadening, see Fig. 1.1.15.
In steady state the gain compensates losses and the gain profile saturates to fulfill the condition
GRV = 1. A homogeneously broadened gain profile saturates till the steady-state condition is ful-
filled for the central frequency. The bandwidth A wr, j, is very small and depends on the thermal and
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Homogeneous broadening Inhomogeneous broadening

Aw| AW L inh

I
N

Total gain factor GRV

—_— wRr

Frequency w

Fig. 1.1.15. Spectrum of an inhomogeneously and homogeneously broadened laser transition in steady
state. Total gain factor GRV vs. frequency of the radiation field.

mechanical fluctuations . In the case of solid-state lasers spatial hole burning will influence
the spectral behavior and can produce even for homogeneous transitions multi-mode oscillation
. In the case of inhomogeneous broadening each spectral group of atoms saturates
separately and many modes will oscillate, which produces a large lasing bandwidth A wr, jnn. If
single-mode operation is enforced by suitable frequency selecting elements, the left — right and
the right — left traveling waves produce two symmetric holes, due to the Doppler effect. This effect

can be used for frequency stabilization (Lamb dip [64Laml).

1.1.6.4 Time constants

The line profile of a real laser transition is in most cases a mixture of homogeneous and inhomoge-
neous profiles, depending on the temperature and the pressure. The following time constants are
used in literature:

Tsp: spontaneous life time,

Ty : upper-laser-level life time (energy relaxation time, longitudinal relaxation time),

Ty : Stochastic processes broaden the line homogeneously. The inverse of the line width is the
dephasing time T .

T5: The line is broadened inhomogeneously. The inverse of this line width Awg is the de-
phasing time T3 .

T>: For the resulting dephasing time (transverse relaxation time, entropy time constant),
approximately holds (depends on the line profiles):

Some examples of decay times are given in Table 1.1.6.

1.1.7 Coherent interaction

Radiation field and two-level system are two coupled oscillators. Without stochastic perturbations
the stored energy is permanently exchanged between these two systems.

If the interaction time of the radiation field with the two-level system is small compared with
all relaxation times, including the pump term, the stochastic processes can be neglected and
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Table 1.1.6. Spontaneous life time Ty, upper-laser-level life time T4, transverse relaxation time 7%,
homogeneous relaxation time 7, and inhomogeneous relaxation time T3 [01Iff][92Koel [86Sie], [01Men|
Chap. 6].

Tep [s] Ty [s] T, [s] T [s] T3 [s]
Neon-atom (He/Ne-laser), 1078 1078 3x107° 1078 4x107°
Ao = 632.8 nm, He (p = 130 Pa),
Ne (p = 25 Pa)
Chromion-ion, A\g = 694.3 nm,
Ri-transition in ruby
T =300 K 3x 1073 3x 1073 10712 10712 2x1077
T=4K 4% 1073 4% 1073 2x1077 3x107° 2x1077
SFg-molecule, Ao = 10.5 pm, 1073 1073 6 x 107° 7x1076 6 x107°
p=04Pa
Rhodamin-molecule in ethanol, 5x107° 5x107° 10712 10712 -
singlet-transition, Ao = 570.0 nm
Neodymium-ion in YAG-crystal, 5x107* 23x107* 7x10712 - -

Ao = 1060 nm, T = 300 K

(1.1.45a)/(1.1.45b) hold. This kind of coherent interaction is of strong interest in nonlinear spec-
troscopy [84Shel [86Sie| [71Laml| [72Coul, [01Menl Chap. 7] and confirmed by many experiments.
Examples of nonlinear coherent interaction are transient response of atoms, optical nutation, pho-
ton echoes, n m-pulses and quantum beats. Here only some very simple examples will be presented.
A more detailed treatment is given in [95Man].

1.1.7.1 The Feynman representation of interaction

Feynman introduced a very elegant representation of interaction, which enables an easy-to-under-
stand visualization.

A very compact description of the two-level interaction was given by Feynman |[57Fey|. The real
electric field is

1
Eical = 3 {Epexpi(wt — kz)] + Ejexp [—i (wt — kz)]} .
Tt generates a real polarization, (1.1.23), shifted in phase against the field:

1 . x .
P rea = 3 {Pagexp [i(wt — kz)] + P}, exp [—i(wt — k2)]}
C cos (wt — kz) + S sin (wt — kz) (1.1.100)

with C, S real vectors:

1. N
C = (PA()—I—ID?,;O)7 Szil(PAO_PAO)'

N |

In the following an isotropic medium is assumed. Then ps, Pa and E are parallel and can be
treated as scalars. With these new real quantities the equations of interaction (1.1.45a), (1.1.45b)
become:
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R;= pAn, inversion

R
R,, sin-polarization
R;, cos-polarization

Fig. 1.1.16. In the case of coherent
interaction, the system is characterized
by its R-vector which rotates in the
polarization/inversion space with con-
stant length.

oC A—A*

oS A4 A%

= =60 — up - A , 1.1.101b

“ yn - An ( ' ) ( )

0An A—A* A+ A*
= i 1.1.101
pA =y 1C< 5 )+S< 5 ), ( 0lc)
where A is a complex quantity. Its modulus is called the Rabi frequency:
E
Az, t) = MAh 9. |4] : Rabi frequency . (1.1.102)

Two vectors R, F' are introduced:

A+ A* i/1—/1*
2 2

R:(C,S,MAAH):(Rl,R27R3), F = ( 75) :(F17F2,F3).

The R-vector characterizes the state of the two-level system and can be depicted in an inver-
sion/polarization space, as shown in Fig. 1.1.16. R corresponds to the Bloch vector of the spin-1/2
system [46Blo]. The equations (1.1.101a), (1.1.101b) of interaction can be condensed to:

OR
rT [F x R] (coherent interaction) . (1.1.103)

Scalar multiplication of this equation with R results in:

<R8R>: (R[FxR])=0,

ot
which means that the length of the vector is constant during interaction:
ICI? + (S + [pa Anf* = |Ro|? . (1.1.104)

The tip of the vector moves on a sphere in the inversion/polarization space with complicated
trajectories [69McC| [74Sar} |69Ics]. The incoherent relaxation and pumping of the system can be
included in (1.1.103) by an additional relaxation term [72Cou].

1.1.7.2 Constant local electric field

If the amplitude E of the electric field is assumed to be constant, a very simple solution of the
rotating-wave equations is obtained with one main parameter, the Rabi frequency A.
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‘5-., . InversionAn .= Polarization P,,
“
‘.“
% Time ¢
‘e, Fig. 1.1.17. Oscillation of inver-
< sion density An and polarization

amplitude Pao in resonance for a
constant local electric field.

For a constant electric field at a fixed position z the rotating-wave approximation has a periodic
solution. Inversion and polarization with the initial condition ¢t = 0, An = ng, Pag = 0 are:

An 62+ |A] cos Bt waEo

—_— = N="—— 1.1.105

no 52 ) h ) ( )
Ao

PAOZno% B(l_COS at)+ isinat| , [=+02+]A2. (1.1.106)

In resonance w = wp, § = 0, the inversion density A n and the amplitude P g of the polarization
oscillate with this frequency, see Fig. 1.1.17. The real polarization P year of (1.1.100) contains the
frequencies wa + |A|. Some values of dipole moments are given in Table 1.1.2 to estimate |A|.
Off resonance the temporal behavior of inversion and polarization is more complicated (optical
nutation) . If at t = 0 all atoms are in the lower level (Ang = —ng) a complete inversion
is produced at ¢t = 7t/|A| by a coherent field. It is called pulse inversion . At t =2/|4], all
atoms are again in the lower level, no energy transfer has taken place.

1.1.7.3 Propagation of resonant coherent pulses

For short pulses, 7 < T, the perturbations can be neglected. The solution of the complete interaction
equations (1.1.101a)—-(1.1.101c) for a propagating resonant pulse is rather simple.

The propagation of pulses in a two-level system is described by the rotating-wave approximation,
(1.1.45a)/(1.1.45b), and by the wave equation in the SVE approximation (1.1.28). The set of these
three non-linear equations is difficult to solve, only special cases will be discussed here. At ¢t = 0
the electric field Ej is assumed to be real, A = A*. In case of resonance, 6 = 0, (1.1.101a) delivers
C =0, R; = 0. The interaction equations (1.1.101b), (1.1.101c) reduce to

R =0,

OR>

2 Yy

8t RB,
OR3

—2 =AR,.
ot Rz

The R-vector moves in the Ro-R3-plane, see Fig. 1.1.18. If the angle 6§ with the Rj3-axis is intro-
duced, one solution of the above equations is:

RQ = Ro sin 9,
R3 = —Rg cos 0
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v

Fig. 1.1.18. In resonance, 6 = 0, the R-vector of the two-
level system rotates in the Ra-Rs-plane.

4)‘9 /IA E
/] — —

ot h

(1.1.107)

Ry is given by the initial conditions at t = 0. The SVE-approximation of (1.1.28) then becomes:

0? 1 02 adld v 1A ko
1 g— _29% T p Gno _ Hafo 1.1.1
<8t62+06t2> s T fosinl, y=0"0 (1.1.108)

From 6 the amplitude Ey of the electric field can be calculated with (1.1.107)/(1.1.105).

1.1.7.3.1 Steady-state propagation of nm-pulses

Steady state means that a pulse is propagating with velocity v and constant pulse envelope
E(t,z) = Eo(t — z/v). The amplitude depends on one parameter w only:

w=t—2z/v
and (1.1.108) becomes:

c\ d?0  acdd ¥

1_7)7 e ¢TI Rysing. 1.1.109

( v dw2+2dw €y fos ( )

This equation is equivalent to the equation of the pendulum with friction in a gravitational
field. In the following examples two different initial conditions are assumed:

>0 (amplifier) ,

Ro = pa Ang { <0 (absorber) ,

which corresponds to the pendulum up or down at ¢ = 0.

1.1.7.3.1.1 27m-pulse in a loss-free medium

A medium without losses (o = 0) interacts with a coherent pulse in resonance (6 = 0). The initial
condition is Ang(t = —o0) = +Ang (Ang < 0, absorber). One steady-state solution is the 27-
pulse, see Fig. 1.1.19, which corresponds to a local field of duration 7 = 27t/ A. The leading edge
of the pulse produces an inversion and energy is transferred to the atomic system, the amplitude
is reduced. The trailing part of the pulse is then amplified by this inversion. In total the pulse
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2n — pulse

)
[—— | [ |
WS e - Cenen

Fig. 1.1.19. Propagation of 27- and 7-pulses in a two-level system.

has lost no energy, but is delayed in time. Such a pulse is only stable, if the broadband losses are
negligible and if the initial inversion is negative. The steady-state solution is:

expliw (t — z/c)]

E = Eyea field) , 1.1.110
peak oosh [(t —z/v) /7] (field) ( )
By = 2V, |— 210 (heak amplitude) (1.1.111)
peak — 50(1 — C/’U) p p ) che
2hwA
Jpeak = 16176/7200 (peak intensity) , (1.1.112)
1-— T
Ton =27 =2 A=¢/v)T (pulse duration) , (1.1.113)
goc
v = WCTWZ& (pulse peak velocity) (1.1.114)
with

go = Ango < 0: small-signal absorption coefficient,
c: phase velocity in the medium,
v : pulse peak velocity.

This two-level system is the most simple model of a saturable absorber, which in the case of
incoherent interaction absorbs the radiation. But the coherent 27-pulse transmits the absorber
without losing energy. Therefore this effect is called self-induced transparency . The pulse is
characterized by three parameters: peak velocity v, peak amplitude Epcakx and the width 75,. One of
these parameters can be chosen arbitrarily, the other two result from (1.1.112)/(1.1.113)/(1.1.114).
But the interaction is coherent only as long as To, < T5.

1.1.7.3.1.2 m-pulse in an amplifying medium

A steady-state solution in an amplifying medium, initial condition An(t = —00) = Ang > 0, with
broadband losses (a # 0) is the 7-pulse [74Loy], see Fig. 1.1.19:

B exp [iw (t — z/c)]
= Epear o [(t—z/c)/7)]

E (field) (1.1.115)

h
Epeak = — (peak amplitude) , (1.1.116)
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A 2
Jpeak = 2000;2 [%} (peak intensity) , (1.1.117)
Tr=27=21T e (pulse duration) . (1.1.118)
9o

The pulse propagates approximately with ¢, depletes at each position the upper level, and converts
this energy via the broadband losses o into heat. The saturated gain just compensates the losses.
The pulse is only stable for a > 0 and gg > 0.

So far solutions of the steady-state SVE-equation were presented, assuming resonance and
a homogeneously broadened two-level system. Off-resonance interaction and inhomogeneously
broadened systems are much more complicated and are discussed in detail in the literature
[74Sar] |691cs| [72Cou]. Moreover, the stability of the pulses with respect to small perturbations
was not yet mentioned. It is controlled by the area theorem .

1.1.7.3.2 Superradiance

The spontaneous emission was neglected in the coherent interaction. An initial state,
R = (0,0, u An), complete inversion, without external field F' would be stable according to the
interaction equations (1.1.103). But due to spontaneous emission and amplified spontaneous emis-
sion, the R-vector will be pushed a bit out of equilibrium and decay into the stable position
R = (0,0, —p A n). This phenomenon is called superradiance and discussed in detail in Chap. 6.2.

1.1.8 Notations

Symbol Unit Meaning

A g1 Einstein coefficient of spontaneous emission
B Vs/m? magnetic induction

Bia, Ba m?/VAs? Einstein coefficient of induced emission
c As/m? component of the Feynman vector R
co m/s vacuum velocity of a plane wave

c m/s phase velocity of light in a medium
€12 - coefficients of the eigenvector

D As/m? electric displacement

E V/m electric field

E, V/m electric-field amplitude

Ei2 VAs energy eigenstates of the two-level system
Ei VAs amplifier input energy

Eout VAs amplifier output energy

Eg VAs/m? amplifier saturation energy density
f(w,wa) - line shape factor

G - gain factor

Gy - small-signal gain factor

g m~! gain coefficient

90 m~! small-signal gain coefficient

91,2 - degeneracies of lower/upper laser level
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Jh m~! gain coefficient of a homogeneously broadened
transition

Jinh m~! gain coefficient of an inhomogeneously broadened
transition

H A/m magnetic field

H, A/m magnetic-field amplitude

H, VAs Hamilton operator of the undisturbed transition

Hint VAs Hamilton operator of interaction

h(w,wa) s line shape factor

j A/m? current density

J Vs,/m? magnetic polarization

J VA /m? intensity

Jr,J VA /m? intensity inside the resonator

Js, Jsa VA /m? saturation intensity of 2-; 3- and 4-level system

k m~? wave number

k m~! wave vector inside the medium

ko m~! wave vector in vacuum

{ m geometrical length of the active medium

n — complex refractive index

Ty - real refractive index

no m™3 density of active atoms

n1,2 m—3 density of lower/upper population

Py real As/m? real polarization of the active atoms

P As/m? complex polarization of the active atoms

Ppy As/m? amplitude of the complex polarization

Py As/m? complex polarization of the host material

R As/m? Feynman vector

R - = +/R1 Ry, average mirror reflectivity

Ry - reflectivity of mirror 1, 2

T m position vector

S VA /m? Poynting vector

T S upper-laser-level life time

T/ S dephasing time due to homogeneous broadening

Ty S dephasing time due to inhomogeneous broadening

Ts S resulting dephasing time

Tsp S spontaneous decay time

Tr, Tox S pulse duration of 7-, 2 7-pulses

\% - resonator loss factor per transit

v m/s pulse peak velocity

Z V/A impedance

Zy V/A vacuum impedance

« m~! absorption coefficient

XA - susceptibility of the active atoms

Xe - electric susceptibility

XH — susceptibility of the host material

Xm - magnetic susceptibility

) 5! detuning

An m~3 inversion density

Ay m™2 transverse delta-operator

Awa s™! line width of homogeneous broadening

A wc 51 line width of collision broadening
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AwR
A wg g1
Awpinn, Awrpp 87

c _
€0 8.8542 x 10712 As/Vm
o) -

|<P1,2> -

K 1.38 x 10723 VAs2/K
/\0 m

A s7!

[ _

Lo 47tx 1077 Vs/Am
H12, po1 Asm

HA Asm

0 _

Pw VAs? /m?

o(w) m?

Oe A/Vm

ao m2

T s

w s7!

WA g1

WR g1
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line width of inhomogeneous broadening

line width of saturation broadening

lasing bandwidth of inhomogeneous/homogeneous
transitions

permittivity

electric constant

state vector of the two-level system
eigenfunctions of the two-level system
Boltzmann’s constant

vacuum wavelength

Rabi frequency

permeability

magnetic constant

= pa, dipole moment of the two-level transition
dipole moment of the two-level transition

beam divergence, slope of the Feynman vector
spectral energy density (per dw)

cross section of the two-level system

electric conductivity

cross section of the two-level system in resonance
pulse width

frequency of the radiation field

resonance frequency of the homogeneously
broadened transition

resonance frequency of the inhomogeneously
broadened transition
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2.1 Definition and measurement of radiometric
quantities

B. WENDE, J. FISCHER

2.1.1 Introduction

Radiometry is the science and technology of the measurement of electromagnetic energy. Here we
confine ourselves on the subfield of optical radiometry which covers the measurement of electromag-
netic radiation in the wavelength range from about 0.01 um to 1000 um. Radiometric quantities
are derived from the quantity energy. The corresponding photometric quantities on the other hand
involve the additional evaluation of the radiant energy in terms of a defined weighting function,
usually the standard photometric observer. In the following only the definitions of the radiometric
quantities are explained in detail. Starting from the radiant energy the other fundamental radio-
metric quantities radiant power, radiant excitance, irradiance, radiant intensity, and radiance are
derived by considering the additional physical quantities time, area, and solid angle.

The radiometric quantities defined in abstract terms are practically embodied by radiometric
standards. Radiometry is based on primary detector standards and primary source standards. Pri-
mary detector standards are mostly electrical-substitution thermal detectors whereas for primary
source standards the emitted radiant power is accurately calculable. For the radiometric measure-
ment of cw laser emission radiation detectors or radiometers calibrated against primary detector
standards are the preferred secondary standards. The detection principle of the radiometers could
be thermal (thermopiles, bolometers, and pyroelectric detectors) or photoelectric (semiconduc-
tors). As secondary standards for pulsed laser radiation mostly thermally absorbing glass-disk
calorimeters are used. These standards are derived from the cw standards using accurately mea-
sured shuttering of the laser radiation to produce pulses of known radiant energy.

2.1.2 Definition of radiometric quantities

Radiometric and photometric quantities are represented by the same principal symbol and may
be distinguished by their subscripts. While radiometric quantities either have the subscript “e” or
no subscript (as in the whole Chap. 2.1), photometric quantities have the subscript “v”, where
“e” stands for “energetic” and “v” for “visible”. The most frequently used radiometric quantities
are listed in Table 2.1.1 together with their symbols, defining equations, and units. The additional
physical quantities applied in Table 2.1.1 are the time ¢, the element of solid angle dw, and the
angle 0 between the line of sight and the normal of the radiating or receiving surface with the area
element dA, see Fig.2.1.1.

In the case that the quantities are functions of wavelength their designations must be preceded
by the adjective “spectral”. For example, the symbol for spectral radiance is L(A). This has to be
well distinguished from the convention for the spectral concentration of a quantity, which is also
preceded by the adjective “spectral”. In that case, however, the symbol has the subscript A, i.e.
dL/d\ = Ly.
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Table 2.1.1. Radiometric quantities, their defining equations and units.

Quantity Symbol Defining equation Unit
Radiant energy Q J
Radiant power P & =dQ/dt W
Radiant excitance M M=do/dA W m™2
Irradiance E E=do/dA W m™2
Radiant intensity 1 I=do/dw Wosr!
Radiance L L=d%>%/(cos HdAdw) Wm™2sr!
n
A dA,
0

! dw

1

1
dA |

1

1 >

1

I

1

(p I

Fig. 2.1.1. Geometry for definition of the radiance.

To explain the defining equations given in Table 2.1.1 a radiation source of finite extent is
considered. If we surround the radiation source with a closed surface and calculate the radiant
energy () penetrating the surface per unit time we get the total radiant power @ emitted by the
source. For clarity, the above mentioned symbols for the spectral properties of the radiation are
omitted in this chapter. The radiant power per unit area of the radiation source associated with
the emission into the hemispheric space above dA is defined as the radiant excitance M. At this
point it is appropriate to introduce the radiation incident from all directions in the hemispheric
space above the surface of a detector. The irradiance F is defined as the radiant power incident on
a surface per unit area of the surface. The irradiance represents also the energy which propagates
per unit time through the unit area perpendicular to the direction of energy transport. This is
known as the density of energy flow identical to the magnitude of the Poynting vector averaged
over time.

Coming back to the source-based radiometric quantities we consider now the radiant power
proceeding from a point source per unit solid angle dw in a specified direction. The corresponding
quantity appropriate especially for nearly point-shaped sources is denoted as radiant intensity I.
If we generalize and consider again a source of finite extent the directional nature of radiation has
to be taken into account accurately. From Fig. 2.1.1 we formally define as radiance L the radiant
power emitted in the (6, ) direction, per unit area of the surface normal to this direction and
per unit solid angle. Note that the area dA, used to define the radiance is the component of dA
perpendicular to the direction of the radiation. This projected area is equal to cosfdA and in
effect, this is how dA would appear to an observer situated on the surface in the (6, ¢) direction.

Although the directional distribution of surface emission varies according to the nature of the
surface, there is a special case which provides a reasonable approximation for many surfaces. For
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an isotropically diffuse emitter the radiance is independent of direction:
LO,p)=1L. (2.1.1)

Such an emitter is denoted as a lambertian radiator which emits in accordance with Lambert’s
cosine law:

I(0) = 1(0) cos 0 . (2.1.2)

The radiant intensity of a perfectly diffuse surface element in any direction varies as the cosine
of the angle between that direction and the normal to the surface element. It is noted that this
law is consistent with the definitions of radiance and radiant intensity given in Table 2.1.1. It
may be helpful to derive the relationship between radiance and radiant excitance for a lambertian
radiator. The radiant excitance into the hemispheric space above dA is calculated from the radiance
by integration over the solid angle dw = sin 6 df dy:

27
0

By removing L(0, ) from the integrand according to (2.1.1) and performing the integration we
get

L(6,¢) cosf sinfdfdyp . (2.1.3)

o &
:J@

o\%

M=nL. (2.1.4)

Note that the constant appearing in the above expression is 7t, not 27, and has the unit steradian

(sr).

2.1.3 Radiometric standards

2.1.3.1 Primary standards

Depending on the application primary source and primary detector standards are used to establish
radiometric scales. Black-body radiators of known temperature with calculable spectral radiance
are operated as primary source standards at temperatures up to about 3200 K . Due to
the steep decrease of their Planckian radiation spectrum in the UV spectral range radiometry with
black-body radiators is limited to wavelengths above 200 nm. In comparison with a black-body
radiator, the maximum of the synchrotron radiation spectrum emitted by an electron storage ring is
shifted to shorter wavelengths by several orders of magnitude . In a storage ring electrons
move with nearly the velocity of light along a circular trajectory and emit a calculable radiant
power through an aperture stop situated near the orbital plane. Radiometry can thus be extended
into the X-ray region up to photon energies of 100 keV.

Electrical-substitution thermal detectors operated at ambient temperature have been the most
frequently used primary detector standards. However, their performance is limited by the thermal
properties of materials at room temperature resulting in complicated corrections that have to be
applied. Hence, their uncertainties remain near 0.1 % to 0.3 % . Cryogenic radiome-
ters have been developed to satisfy the increasing demands for more accurate detector standards
from users especially in new and expanding fields of optical fibers, laser technology, and space sci-
ence. Today, these instruments with absorption cavities at nearly the temperature of liquid helium
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Helium reservoir
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Quadrant diodes

Brewster window

Photodiode Tzr == Fig. 2.1.2. Cryogenic radiometer for the calibration
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Laser Stabilizer ~ Spatial filter . . . .

| | : _| cryostat via a Brewster window and is aligned by

| H I I L ! J quadrant photodiodes. In the cavity the laser radia-
Mirror tion is absorbed and electrically substituted.

are the most accurate among all primary standards, with relative uncertainties of less than 0.01 %
. The principle of operation of both the cryogenic radiometers and the instruments
at ambient temperature is that a thermometer measures the temperature rise of an absorption cav-
ity, relative to a constant-temperature heat sink, during radiant and electrical heating cycles. By
adjusting the electrical power so that the absorption cavity temperature rise is the same for both
types of heating, the radiant power can be equated to the easily measured quantity of electrical
power. For cryogenic radiometers the corrections due to the limited absorptance of the cavity, the
lead heating of electrical connections, the radiative heat loss, and the background radiation can be
made sufficiently small to reach very accurate equivalence of optical and electrical heating [96Fox].
Today, high-precision calibrations of laser radiometry secondary standards are mostly traceable
to cryogenic radiometers. In Fig. 2.1.2 a typical experimental arrangement for the calibration of
transfer photodiodes is shown .

2.1.3.2 Secondary standards

Secondary standards serve to disseminate a metrologic scale or quantity to the user in science
and industry. In this section, first, the common detectors used in the secondary standards for laser
radiometry are shortly described, and second, some examples for laser radiometers and calorimeters
are given. The detection principle of the secondary standards is usually thermal or photoelectric.
The thermal detectors have the remarkable advantage of a flat spectral responsivity function which
makes the calibration for different laser wavelengths not necessary or at least easier compared to
that of photoelectric detectors. Among the thermal detectors we distinguish between thermopile
detectors, bolometric and pyroelectric detectors.

A thermopile consists of a number of thermocouples in series to provide a thermoelectric voltage
proportional to the temperature difference between the receiver and its thermal environment. Its
optimization in detector applications has received considerable attention [68Smil [58Schl [70Ste]. At
this point the term responsivity s is introduced which is the ratio of the detector output to the
detector input. Whereas the detector input is a radiometric quantity, the detector output is usually
an electrical quantity, for example current, voltage, or change in resistance. In order to optimize
the responsivity of a thermopile one has to maximize the Seebeck coefficient of the two materials
used for each thermocouple, the thermal resistance between the receiver and the environment, and
the absorptance of the surface. The materials used for thermocouples are either metals, alloys, or
semiconductors, for examples see .

A bolometer is a temperature transducer based on the change of electrical resistance with
temperature. The important quantity is the temperature difference between the receiver and its
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Fig. 2.1.3. Cross section of a cone-shaped laser ra-
diometer. 3: blackened cone, 6: aperture, 7: heat protec-
tion tube, 8: electrical heater, 9: electrical connections,
10: thermopile; 1, 2, 4, 5: parts of the heat sink.

thermal environment. Therefore one resistance element is needed to measure the temperature of
the receiver and one to measure that of the thermal environment. AC and DC bridge techniques
are applied for the comparison, the most common employing Wheatstone bridge configurations.
The second resistance element should be physically close to the radiation-measuring element to
compensate for convective disturbances, pressure fluctuations, changes in temperature of the hous-
ing, and instabilities in the bridge supply. The resistors are preferably made of metal wires or films
of nickel, platinum, or gold . Thermistors are also used which have a larger temperature
coefficient of the resistance. At lower operation temperatures the signal-to-noise ratio of bolometers
can be increased considerably .

Pyroelectric detectors produce a current proportional to the rate of temperature change. The
detection mechanism is based on the temperature dependence of the electrical polarization in
ferroelectric crystals. Since pyroelectric detectors respond to modulated radiant power only, their
use in laser radiometers for measuring cw radiation requires chopping of the incident beam. This can
provide considerable drift immunity and allows for the use of drift-free AC amplification techniques
[70Put} [75Tif].

Beside the thermal detectors also photoelectric devices or quantum detectors are used in laser
radiometry. Photoelectric detectors for laser radiometric applications are either photoconductors
or photodiodes. In a photoconductor made of a thin film of a semiconductor material the inci-
dent radiation generates additional carriers. These intrinsic band-to-band transitions or extrinsic
transitions involving forbidden-gap energy levels result in an increase of conductivity . For
sensitive infrared detection, the photoconductor must be cooled in order to reduce thermal ioniza-
tion of the energy levels. In photodiodes the carriers are mainly generated in the depletion layer
of the diode junction. The electron-hole pairs separated by an internal or external electric field
recombine by driving an external current. Photodiodes are operated in two different modes: In
the photovoltaic mode no bias voltage is applied and the photodiode can be considered as current
source. In contrast, in the reverse-bias mode the photocurrent generates a voltage drop at an ex-
ternal load resistance which is used as measuring quantity. The reverse-bias mode is preferred for
the detection of pulsed laser radiation.

A practical example of a radiometer for cw laser radiation is shown in Fig. 2.1.3. It measures
radiant power in the range from 1 mW to 10 W, whereas the lower limit is set by detector and am-
plifier noise and the upper by the load limit of the electrical heater . The radiation absorber
is a polished hollow cone electro-plated with a nearly specular reflecting black nickel layer. The
temperature difference between the absorber cone and the heat sink is measured by a thermopile.
The electric heater for moderate-accuracy in-situ calibrations of the instrument is wound around
the cone. Another design of a thermopile-type radiometer with an integral alignment module can
be found in . Further similar systems are described in . A commercial version
of a laser radiometer based on a pyroelectric lithium tantalate crystal is described in . For
higher radiant power levels of up to 1 kW cavity absorbers cooled by a surrounding jacket of flowing
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water are employed. The difference in temperature between the outflowing and inflowing water is
measured and serves as quantity for the absorbed laser radiant power . A special design of
the surface geometry of the cavity reduces the irradiance of the laser beam, thus improving the
protection from damaging the surface.

The preferred instruments for pulsed laser radiation are thermally absorbing devices such as
calorimeters. The receiver element is often a glass-disk, where the radiation is absorbed in the
volume instead of on the surface. The absorptance exhibits an excellent stability under chemical
and mechanical stress. This type of calorimeter is described in . The radiative
load can be reduced by using glass with a low absorption coefficient which increases the length of
the absorption path. On the other hand the heat capacity increases linearly with the thickness of
the glass-disk which, in conjunction with the poor thermal conductivity of glass, results in long
response and cooling times of these detectors. The radiometric scale for laser radiant energy is
usually derived from the scale for cw laser radiant power. In [91Moe| a fast electromechanical
shutter is used to produce pulses of known laser radiant energy of up to 5 J. The influence of
the pulse duration has to be corrected in the calibration procedure. A laser energy meter not
depending on a cw laser radiant power scale is described in . In this instrument the light
pressure of the laser beam sensed by two mirrors is converted by a moving coil to an electrical
signal. The main advantages of this system are fast response and no interruption of the laser beam.
The device has been investigated for single laser pulses of radiant energies between 10 mJ and 6 J.
Another method not interrupting the laser beam is the photoacoustic calorimetry [86Kim]. There,
the radiant energy incident upon a mirror is absorbed at the mirror surface. The absorbed energy
generates elastic strain waves which propagate through the mirror substrate. The strain waves
eventually pass through a piezoelectric transducer attached to the back of the mirror substrate.
The voltage of the piezoelectric crystal gives a direct indication of the amount of energy absorbed
at the mirror surface. Since a priori the absorptance of the mirror is not known the instrument has
to be calibrated against a standard energy meter.

2.1.4 Outlook — State of the art and trends

Although optical radiometry has been developed for 100 years, measurements of the various ra-
diometric quantities only recently have achieved the required small uncertainties. Today the most
accurate detector-based primary radiometric standard is the electrically calibrated cryogenic ra-
diometer. In this instrument the radiant power of — preferably — a laser beam is measured by sub-
stituting the absorbed optical power of the laser beam by the electrical power of a heating system.
Cryogenic radiometers operate at liquid helium temperatures and have a measurement uncertainty
of a few parts in 10, a significant improvement over earlier room-temperature radiometers.
Accurate characterization of laser sources is crucial to the effective development and use of
industrial technologies such as light-wave telecommunications, laser-based medical instrumenta-
tion, materials processing, photolithography, data storage, and laser safety equipment. Traceable
measurement standards are essential both for users to have confidence in their measurements and
to support quality assurance in the manufacture of lasers and laser systems. Because lasers present
a potential safety hazard, it is also important to have measurement standards to satisfy nation-
ally and internationally agreed safety limits. The traceability for laser radiometric measurements
in Germany is maintained by the Physikalisch-Technische Bundesanstalt. It meets the require-
ments for calibration and testing laboratories, certification and accreditation bodies defined in the
ISO/IEC Guide 17025 and the DIN/EN 45000 and DIN/EN/ISO 9000 series of standards, see
http://www.ptb.de/en/org/q/q3/933/_index.htm.
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2.2 Beam characterization

B. EppricH

2.2.1 Introduction

The success of almost any laser application depends mainly on the power density distributions in a
certain area of the laser beam, usually the focal region. It is the aim of laser beam characterization
to describe and predict the profiles a beam takes on under free-space propagation or behind optical
systems.

The attributes of a power density distribution in a plane transverse to the direction of prop-
agation can be divided into size and shape. Under free-space propagation the size of the power
density profile is always changing with the distance from the source, whereas the shape of the
profile may vary or not. Examples for shape-invariant laser beams are the well-known Gaussian,
Laguerre-Gaussian, Hermite—Gaussian, and Gauss-Schell model beams.

A complete characterization of laser beams would allow the prediction of power density distri-
butions, including size and shape, behind arbitrary optical systems as far as they are sufficiently
known. Admittedly for such detailed characterization a huge amount of data and sophisticated
measurement procedures are necessary. But for many applications the knowledge and prediction of
the transverse extent of the laser beam profile might be sufficient. Restriction to nearly aberration-
free optical systems then enables beam characterization by only ten or less parameters.

In the following the validity of the paraxial approximation will be presumed. In practical this
means that the full divergence angle of the beam should not exceed 30 degrees. Furthermore,
any polarization effects are neglected. Beam characterization methods based on the considerations
presented in this chapter have recently become an international standard, published as ISO 11146

1991S0).

2.2.2 The Wigner distribution

A complete description of partially coherent radiation fields (within the restrictions stated above)
can be given by a two-point-correlation integral of the field in a transverse plane at location z

199Box]:

to+T

Flrim,zm) =1 / E*(r1,2,8) B (rg, 2, +7) dt (2.2.1)
to

where E (r,z,t) is the electrical field, z the coordinate along the direction of propagation,

r = (z,y)" a transverse spatial vector (see Fig. 2.2.1), and T the integration time which shall

be large enough to ensure that the integration results are independent of the starting time ¢y. The

temporal Fourier transform of this correlation integral is known as the cross-spectral density or

the (mutual) power spectrum:
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Fig. 2.2.1. Spatial coordinates r; and 72 of a pair of points in a
plane transverse to the direction of propagation.

W xy.u,v)

Fig. 2.2.2. The phase space coordinates of the Wigner distribu-
tion. x and y are spatial transverse coordinates, u and v are the
corresponding angular coordinates.

I'(ry,re,2,w) = /f(rl,rg,z,ﬂ') evYTdr. (2.2.2)

Since laser beams in general can be considered as quasi-monochromatic, the frequency depen-
dency will be dropped in the following:

I'(r1,72,2,w0) = I' (r1,72,2) . (2.2.3)

From the cross-spectral density in a transverse plane at location z the power density in that
plane can easily be obtained by

I(r,2)=T(r,r,2) . (2.2.4)

Given the cross-spectral density at an entry plane the further propagation through arbitrary,
but well-defined optical systems can be calculated by several methods and hence the power density
distribution in the output plane of the systems predicted .

The Wigner distribution W (r, g, z) of partially coherent beams is defined as the Fourier trans-
form of the cross spectral density with respect to the separation vector s :

W(r,q,z) :/F(r—i—%s,r— 1s,z)e *o s (2.2.5)
The Wigner distribution contains the same information as the cross-spectral density, but in a
different, more descriptive manner. Considering q = (u,v)T as an angular vector with respect to
the z-axis (Fig. 2.2.2), the Wigner distribution gives the part (amount) of the radiation power
which passes the plane at z through the point 7 in the direction given by g. Within this picture

the Wigner distribution might be considered as a generalization of the geometric optical radiance,
although this analogy is limited. E.g. the Wigner distribution may take on negative values.
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The power density distribution in a transverse plane is obtained by integration over the angles
of direction,

I(r,z)= /W (r.q,2) dgq , (2.2.6)

and the far-field power density distribution by integration over the spatial coordinates,

Ir (q) = /W(r,q,z) dr . (2.2.7)

The Wigner distribution represents the beam in a transverse plane at location z. As the beam
propagates in free space or through an optical system the Wigner distribution changes. This is
reflected in the z-dependency of the Wigner distribution in the equations above. In the following
equations this z-dependency will be dropped wherever appropriate.

The propagation of the Wigner distribution through aberration-free first-order optical sys-
tems (combinations of parabolic elements and free-space propagation) is very similar to that of
geometric-optical rays. Such rays are specified by their position r and direction q. After prop-
agation through an aberration-free optical system position and direction will change according

to
(1) =5 (). 229
qout qin

where S is a 4 x 4-matrix representing the optical system, the system matrix (see Chap. 3.1). Con-
sidering the Wigner distribution as a density distribution of geometric optical rays, its propagation

law is given by ray tracing [78Bas]:

. Tin — Tou
Wout (rout; qout) = Wiy (T'in) qin) with ( > =S L. ( t) . (229)

in qout

2.2.3 The second-order moments of the Wigner distribution

From the Wigner distribution smaller sets of data can be derived, which can be associated to
certain physical properties of the beams. These sets of data are the so-called moments of the

Wigner distribution [86Bas]:

B J W (z,y,u,v) zF ytu™ o™ dz dy dudo

k,l, m,n
(ytumot) = JW (z,y,u,v) dedydudv

with k,0,m,n>0, (2.2.10)

where

T

W (z,y,u,0) =W (r,q) with 7= (z,9)" , q=(u0) (2.2.11)

The order of the moments is defined by the sum of the exponents, &k + ¢ + m + n. There are
four first-order moments, (x), (y), (u), and (v), which together specify position and direction of
propagation of the beam profile’s centroids within the given coordinate system.

The centered moments of the Wigner distribution are defined to be independent of the coordi-
nate system:

k,t, m,n

<x yu"v >C:

JW (@ y,u,0) (@ = (@)" (y— @) (w— ()™ (v— ()" dvdydudv
JW (z,y,u,v) dzdydudv '

(2.2.12)
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There are ten centered second-order moments, specified by k + £ + m + n = 2. Three pure spatial
moments, <x2>c , <y2>c, (xy). , three pure angular moments, <u2>c , <1)2>C , (uv),. , and four mixed
moments, (zu),, (yv)., (xv),, and (yu).. The centered second-order moments are associated
to the beam extents in the near and far field and to the propagation of beam widths as will be
discussed in the next section.

Only the three pure spatial moments can directly be measured since they can be obtained from
the power density distribution in the observation plane by

(4= [ 1) @) = ) drdy 2213)
with

() = %/I(ﬂc,y) zdzdy, (2.2.14)

(y) = %/I(ﬂc,y) ydzdy, (2.2.15)
and

P= /I(ac,y) dzdy . (2.2.16)

As the beam propagates through optical systems the Wigner distribution changes and conse-
quently the moments change, too. A simple propagation law for the centered second-order moments
through aberration-free optical systems can be derived from the propagation law of the Wigner
distribution (2.2.9). Combining the ten moments in a symmetric 4 x 4-matrix, the variance matrix

§x2§c éx:gic Exuic Exvic
_ | Y. Y7 )e yu) . Yvu).
P = <IU>C <yu>c <u2>c <U’U>C b (2217)
(o). () (ww), (0%,
delivers the propagation law
Pout =S Pin ' ST ’ (2218)

where P;, and P, are the variance matrices in the input and output planes of the optical system,
respectively, and S is the system matrix.

2.2.4 The second-order moments and related physical
properties

In this section the relations between the centered second-order moments and some more physical
properties are discussed.

2.2.4.1 Near field

The three spatial-centered second-order moments are related to the spatial extent of the power
density in the reference plane as can be derived from (2.2.13). For example, the centered second-
order moments <x2>c, defined by
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a?) = %/I(%y) (z — (2))* dzdy , (2.2.19)

can be considered as the intensity-weighted average of the squared distances in z-direction of all
points in the plane from the beam-profile center. Obviously, this quantity increases with increasing
beam extent in z-direction. A beam width in z-direction can be defined as

dy = 44/ (22). . (2.2.20)

The factor of 4 in this equation has been chosen by convention to adapt this beam-width definition
to the former 1/e2-definition for the beam radius of Gaussian beams. For an aligned elliptical
Gaussian beam profile,

w2
I(z,y) xe Yz .e Ty, (2.2.21)
where w, and w, are the 1 /e*-beam radii in 2- and y-direction, respectively, the relation
dy = 2w,

holds. Similar, a beam width in y-direction can be defined as

dy = 4/ (2, - (2.2.22)

The beam width along an arbitrary azimuthal direction enclosing an angle of o with the z-axis
can be derived from a rotation of the coordinate system delivering

dy, = 4\/<x2>c cos? o + 2 (zy) sinacosa + (y2)_ sin® a . (2.2.23)

In general, the beam width considered as a function of the azimuthal direction o has unique
maximum and minimum. The related directions are orthogonal to each other and define the prin-
cipal axes of the beam. The signed angle between the x-axis and that principal axis which is closer
to the z-axis is given by

= 1zau an 72 <a:y>c
= 3 t <<332>c — <y2>c) . (2.2.24)

The beam width along that principal axis which is closer to the z-axis is determined by

d! = 2\/5{(<x2>c+<y2>c) +e [((:c Y= (1) )7 + 4 (zy) ]é}é (2.2.25)
with

€ = sgn (<x2>c — <y2>c) . (2.2.26)

Correspondingly, the beam width along the principal axis closer to the y-axis is given by

dy =23 { (), + 67— [ - )+ aand] ) (2.2.27)

Hence, the three spatial-centered second-order moments define the size and orientation of the
so-called variance ellipse as the representation of a beam profile’s extent (Fig. 2.2.3).

Beam profiles having approximately equal beam widths in both principal planes, d, ~ d, , may
be considered as circular and a beam diameter may be defined by

d=2V2/({22) + (y2) . (2.2.28)

Sometimes this is an useful definition even for non-circular beam profiles, denoted then as “gener-
alized beam diameter”.
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Fig. 2.2.3. Widths and variance ellipse of a power density profile. Left: widths d, and d, along the
coordinate axes, middle: width dq along an arbitrary direction, right: widths d, and d, along the principal
axes.

2.2.4.2 Far field

The three angular-centered second-order moments are related to the beam-profile extent in the
far field, far away from the reference plane, or in the focal plane of a focusing lens. From the
propagation law of the second-order moments, (2.2.18), the dependency of the spatial moments on
the propagation distance z from the reference plane can be derived:

<x2>c (2) = <x2>C70 +22 (wu), o+ 22 <u2>C70 ,
(zy) (2) = (2Y) o + 2 ((:w)c,o + (yu>c)0) + 22 (uv) g (2.2.29)
(U (2) = (¥7)eo 22 (Y0)oo + 27 (V%) -

For large distances z the spatial moments depend only on the angular moments in the reference
plane:

<x2>c (2) = 22 <u2> ,
(zy), (2) = 2% (wv) (2.2.30)
(1) () = 22 (v*) .

The azimuthal angle ¢ of that principal axis in the far field, which is closer to the xz-axis is then
obtained by

R S 1 N A W SN 100
o= i g ate (<x2>c<z>—<y2>c<z>> o <<u2>c—<v2>c>’ (2.2:3)

and the (full) divergence angles along the principal axes of the far field might be defined as

z—00 z

o= i D = avB (), + (1)) +a [ - ) i) L e2a)

0, = Jim, dyz(z) =2V2 { ((u2), + (@%),) =0 [((u2), = (v?),)" + 4 (u)?] } (2.2.33)
with
n=sgn ((z*), - (v*),) - (2.2.34)

The generalized beam divergence angle might be defined as

0 =2V2,/(u?), + (v?), . (2.2.35)

The azimuthal orientation of the far field may differ from the orientation of the near field.
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2.2.4.3 Phase paraboloid and twist

The four mixed moments (zu),_ , (zv). , (yu)., and (yv), are closely related to the phase properties
of the beam in the reference plane. Together with the three spatial moments they determine the
radii of curvature and azimuthal orientation of the best-fitting phase paraboloid. Although the
phase properties of partially coherent beams might be quite complicated, it is always possible to
find a best-fitting phase function being quadratic (bilinear) in z and y:

@ (z,y) =k (az®+2bzy+cy?) . (2.2.36)

The best-fitting parameters a, b, ¢ are defined by minimizing the generalized divergence angle,
(2.2.35), if a phase function according to (2.2.36) would be subtracted from the actual phase
distribution in the reference plane (e.g. by introducing a cylindrical lens) resulting in

(v?) (wu) (&%) + (1)) — (ay)” (2u) — (o) — (xy) (*) ({2v) + (yu))

. : , (2.2.37)
((@2) + (2)) ((@2) (y2) — ()’
y _ (22 ) (o) + (yw) — (zy) ((22) (o) 2+ W) ew) (2.2.38)
(@) + () (@) ) = (ay)’)
. (2?) (yv) ((2®) + (y*)) + (@y)® ((zu) — (yv)) — (zy) (22) () + (yw) . (2.2.39)

() + () ((22) () = (@n)°)

A phase distribution as given in (2.2.36) can be considered as a rotated phase paraboloid, with

1 2b
vp =3 atan ( > (2.2.40)

a—cC

as the signed angle between the z-axis and that principal axis of the phase paraboloid, which is
closer to the z-axis, and with

R, = 2 (2.2.41)
(a+c)+pur/(a—c) +4b?
and
2
R, = - (2.2.42)
(a+c¢)—pr/(a—c)” +4b?
with
w=sgn (a—c) (2.2.43)

as the radii of curvature along that principal axis of the phase paraboloid, which is closer to the
x- and y-axis, respectively. The radii of curvature R, and R) independently may be positive or
negative or infinite, the later indicating a plane phase front along that azimuthal direction. The
azimuthal orientation of the phase paraboloid’s principal axes may differ from the orientation of
the near field and/or far field.

If the radii of phase curvature along both principal axes are approximately equal, R, R; ,a
generalized phase curvature of the best-fitting rotational symmetric phase paraboloid is defined by

$2 2
R= m . (2.2.44)
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Another phase-related parameter is the so-called twist, defined as
tw = (xv) — (yu) . (2.2.45)

The twist parameter is proportional to the orbital angular momentum transferred by the beam

193Sim].

2.2.4.4 Invariants

From the ten centered second-order moments two basic quantities can be derived, that are invariant
under propagation through aberration-free first-order optics [03Nem).
The effective beam propagation ratio is defined as

Bl

M?

off = ;(det(P)) >1 (2.2.46)

and can be considered as a measure of the focusability of a beam. The lower limit holds only for
coherent Gaussian beams.
The intrinsic astigmatism a, given by

o= T2 (&), (1), = @u)?) + (), (%), — w0
2 {aey), (wn), — (av), (), )] — (M%) 20, (2.2.47)

is related to the visible and hidden astigmatism of the beam (see below).

2.2.4.5 Propagation of beam widths and beam propagation ratios

Under free-space propagation any directional beam width d,, as well as the generalized beam
diameter d, obeys an hyperbolic propagation law:

do (2) = do o \/1 + ( ) \/d +02 (2 —20.0)°, (2.2.48)

where zp,o is the z-position of the smallest width, the waist position, dy . is the waist width, 0,
the divergence angle, and 2R  the Rayleigh length, i.e. the distance from the waist position, where
the width has grown by factor of v/2. For the width along the z-direction, a@ = 0, see Fig. 2.2.4,
the parameters can be obtained by

0= (2.2.49)
do = 41/ (x2) _ (au. (2.2.50)
o e <u2>c 7 o
and
2 zu)?
= éuzic _ iu2;§ _ (2.2.51)
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Fig. 2.2.4. Free-space propagation of beam widths
with the beam waist position zp, the beam waist
width dp, the Rayleigh length zgr, and the full di-
vergence angle 6.

NY

For other azimuthal directions a the same equations apply with the following substitutions:
<sc2>c — <x2>c cos? o + 2 (zy), cosasina + <y2>c sin o,
(zu), — (vu), cos® a + 2 ({zv), + (yu),) cosasina + (yv), sin’ a , (2.2.52)
(u?)_ = (u?)_cos® a + 2 (uv), cosasinar + (v*)_sin® v .

For the generalized diameter d the propagation parameters are obtained by

(zu), + {yo),

R (2.2.53)

zZ0 — —

2

e+ (0?),
do =2 \/§\/(<m2>c +(y2)) — (zw)e + (yo))” ’ (2.2.54)
and

(W) + (v?).

= \/<ﬂc2>c + (%) (<M>c + <yv>c>2 . (2.2.55)

(W) + (02 \(u?) + (%),

It should be noted that beam widths along the principal axes, d, and dé, do not obey the hyperbolic
propagation law in the case of a general astigmatic beam with rotating variance ellipse (see next
section).

The product of the (directional) beam waist diameter d, d, and the corresponding far-field
divergence angle 0, 6, is called the beam parameter product. Due to diffraction the beam parameter
product has a lower limit given by

d2 A d? A
do-0=="L>42 dyg 0, = 2% >42 (2.2.56)
2R u ZR,a T

Normalization to this lower limit delivers the so-called beam parameter ratios
T do - 0 5 T doo-0a

a0 MeExT

The beam parameter ratios M2 and M2 are invariant in stigmatic aberration-free first-order optical

systems (combinations of perfect spherical lenses). In contrast to the effective beam parameter ratio
M?Z; | they may change under propagation through cylindrical lenses.

2.2.5 Beam classification

Lasers beams can be classified according to their propagation behavior. The classification is based
on the discrimination between circular and non-circular power density profiles and the azimuthal
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orientation of the non-circular profiles. A beam profile is considered circular if the beam widths
along both principal axes are approximately equal, or, in practice, if

zs Yy

max (d;, d;)

min (d' d')
VTN 0.87. (2.2.58)

In this sense a homogeneous profile with square footprint is regarded circular, see Fig. 2.2.5.

Fig. 2.2.5. Within the concept of second-order-moment beam char-
acterization a square top-hat profile is considered circular: Its width
is independent of the azimuthal direction.

2.2.5.1 Stigmatic beams

A laser beam is considered stigmatic if all its profiles under free-space propagation are circular and
if all non-circular profiles behind an arbitrary cylindrical lens, inserted somewhere in the beam,
have the same azimuthal orientation as the lens. The system matrix Py of a perfectly stigmatic
beam has only three independent parameters:
<x2>c (2) (zu), 0
0 0
P, = (@), (wu)e | (2.2.59)

(zu), 0 <u2>C 0
0 (ww)e 0 (u?),
Physical parameters of a stigmatic beam are the beam diameter in the reference plane
d=4./(x?), (2.2.60)
and the full divergence angle

0 =4/ (u?) . (2.2.61)

Since the properties of a stigmatic beam are independent of the azimuthal direction, it has a unique
waist position

¢ (2.2.62)

with a waist diameter of
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e (2.2.63)

do =4 <{E2>C —

The Rayleigh length 2R is the distance from the waist position where the diameter has grown by
a factor of v/2, given by

= =1/ 1) <u2>§. (2.2.64)

R &) (2.2.65)

2.2.5.2 Simple astigmatic beams

A laser beam is classified as simple astigmatic if at least some of the power density profiles the beam
takes on under free-space propagation are non-circular, but all non-circular profiles have the same
azimuthal orientation. In practice, the orientations of two non-circular beam profiles are regarded
as equal, if the azimuthal angles differ by less than 10 degrees. A simple astigmatic beam whose
principal axes are parallel to the z- and y-axis is called aligned simple astigmatic. The variance
matrix P.s, of a perfect aligned simple astigmatic beam has six independent parameters:

<x2>c 0 (wu), 0

o ), o (yv),
Pasa = (2, 0 (w2, 0 : (2.2.66)

0 o). 0 (%),

All the physical parameters given for stigmatic beams can be assigned separately for each principal
axis of a simple astigmatic beam. The diameters in z- and y-direction are

dp = 44/(22), , dy =4/(2), (2.2.67)

and the according full divergence angle

0, =4/ (W2, 0,=402). (2.2.68)

Aligned simple astigmatic beams have in general two different waist positions for each principal
axis:

_ w0 (2.2.69)

dow = 44/ (2?), — <u2>c do,y =4 3 (2.2.70)
Similarly, two Rayleigh lengths are defined by
{2, <mu
ZRx = (). — <u2 , 2Ry = v2 (2.2.71)
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and the radii of phase curvature are

@ 5 _ W) (2.2.72)

o), T (),

The propagation laws for the beam diameters along both principal axes are:

dI(z):do,w\/H( ) \/d +02(z—20,)° (2.2.73)

and

d, (2) = do, \/ 1+ ( ZU*’) = \Jd3, 03 (=~ 20,)° - (2.2.74)

For non-aligned simple astigmatic beams similar relations hold.

2.2.5.3 General astigmatic beams

All other beams are classified as general astigmatic. Usually all ten second-order moments are
necessary to describe a general astigmatic beam.

2.2.5.4 Pseudo-symmetric beams

Pseudo-symmetric beams are general astigmatic but “look like” stigmatic or simple astigmatic
under free-space propagation. They possess an inner astigmatism which is hidden under free prop-
agation and propagation through stigmatic (isotropic) optical systems (i.e. combinations of spher-
ical lenses). Pseudo-symmetric beams differ from real stigmatic or simple astigmatic beams by a
non-vanishing twist parameter, ¢y # 0.

The variance matrix Ppg of pseudo-stigmatic beams is therefore

<:c2>c 0 (wu), %
0 <x2>c —% (zu),
Ppst - <117’U,>C 7% <u2>c O (2275)

|
®

we 0 (u?),

Under free-space propagation there is no difference between a real stigmatic beam, t,, = 0, and the
corresponding pseudo-stigmatic one, ty, # 0, (2.2.29). The difference can be uncovered by inserting
an arbitrary cylindrical lens somewhere in the beam path. The stigmatic beam is converted into a
simple astigmatic beam with non-rotating variance ellipse while the pseudo-stigmatic one is turned
into a general astigmatic beam with rotating variance ellipse. Figure 2.2.6 illustrates the different
behaviors.

The variance matrix Ppg, of aligned pseudo-simple astigmatic beams is given by

(@), 0 (ww), 3

(2.2.76)
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Fig. 2.2.6. Propagation of a stigmatic (top) and pseudo-stigmatic (bottom) laser beam. In free-space
propagation both beams are indistinguishable. But a cylindrical lens transforms the stigmatic beam into
a simple astigmatic one, whereas the pseudo-stigmatic beam becomes general astigmatic with rotating
variance ellipse.

Again, under free-space propagation there is no difference between a real simple astigmatic beam,
tw = 0, and the corresponding pseudo-simple astigmatic one, ty, # 0, (2.2.29). Inserting an aligned
cylindrical lens somewhere in the beam pass unveils the difference. The simple astigmatic beam
keeps being simple astigmatic while the pseudo-simple astigmatic one is turned into a general
astigmatic beam with rotating variance ellipse. Figure 2.2.7 illustrates the different behaviors.

2.2.5.5 Intrinsic astigmatism and beam conversion

Applying astigmatic (anisotropic) optical systems (including cylindrical lenses) may convert beams
from one class to another. But only beams with vanishing intrinsic astigmatism a, (2.2.47), can be
converted into stigmatic ones \\ In practice, beams with

— <0.039 (2.2.77)
( eff

are considered intrinsic stigmatic, all others intrinsic astigmatic (the limit of 0.039 is a consequence
of (2.2.58)). Intrinsic astigmatic beams can always be converted into pseudo-stigmatic or simple
astigmatic ones.
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Fig. 2.2.7. Propagation of a simple astigmatic (top) and a pseudo-simple astigmatic (bottom) laser beam.
In free-space propagation both beams are indistinguishable. But an aligned cylindrical lens transforms the
simple astigmatic beam into a simple astigmatic one, whereas the pseudo-simple astigmatic beam becomes
general astigmatic with rotating variance ellipse.

2.2.6 Measurement procedures

Only the three pure spatial moments out of the ten second-order moments are accessible for direct
measurement. The other seven moments are retrieved indirectly based on the propagation law of
the spatial moments (2.2.29).

The measurement method is based on the acquisition of a couple of power density profiles at
different z-locations near the generalized beam waist, (2.2.53), e.g. by means of CCD cameras or
similar devices (Fig. 2.2.8, left). From the measured profiles the spatial moments at each measure-
ment plane are calculated. Fitting parabolas with three free parameters to the curve of each spa-
tial moment delivers nine independent quantities: the moments <:z:2>c’0, (TY)e.0 <y2>c)0, (zu) g
YV <u2>c 0 (U)o, <v2>c o and the sum of the crossed mixed moments (zv)., + (yu). o If
the waist of the beam is not acéessible, an artificial waist has to be created by inserting an almost
aberration-free focusing lens into the beam path. Approximately half of the profiles should be
acquired close to the waist within one generalized Rayleigh length, the rest outside two Rayleigh
lengths. This ensures balanced accuracy for all parameters of the fitting process.

%)

Fig. 2.2.8. Determination of the ten second-order moments in three steps. First step is a z-scan measure-
ment (left), in the second step the CCD camera is placed in the focal plane behind a horizontally oriented
cylindrical lens (middle), in the third step the lens is rotated by 90 degrees (right).
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At least one cylindrical lens is needed for the measurement of the missing difference of the
crossed mixed moments (zv)co — (Yu)co. To retrieve it, a cylindrical lens with focal length f
is inserted into the beam path at an arbitrary position in the beam waist region. Firstly, this
cylindrical lens shall be aligned with the z-axis and the spatial moment (zy), is measured in the
focal distance behind the lens (Fig. 2.2.8, middle). Next, the lens is rotated by 90 degrees and the
spatial moment (zy), is again measured in the focal distance from the lens (Fig. 2.2.8, right). The
missing difference of the crossed mixed moments of the reference plane is then given by

(2v) o = (Yu)eo = w : (2.2.78)

2.2.7 Beam positional stability

2.2.7.1 Absolute fluctuations

For various reasons a laser beam may fluctuate in position and/or direction. The positional fluc-
tuations in a transverse plane may be measured by the variance of the first-order spatial moments
of the beam profile:

1 < 1 & ’
(%), = 5 2 ()i - (N > <x>i> : (2.2.79)

i=1

(o) = 3 2 (o) )= 5 2o @) 3 Dol (2:2.80)

o m (195 Y
W) =y 2 W= F 2] (2.2.81)

where (z), and (y), are the first-order moments determined in N individual measurements and

N N

N N
== 231 (x);, 9=+ 231 (y), define the long-term average beam position. Obviously, the positional
1= 1=

fluctuations are different from plane to plane. It can be shown that, under some reasonable assump-
tions, the positional fluctuations can be characterized closely analogous to the characterization of
the beam extent based on the second-order moments of the Wigner distribution .
Within this concept, the fluctuation properties of a laser beam are completely determined by ten
different parameters, arranged in a symmetric 4 x 4 matrix

Ex?s ga:;gis Exuis Exvis

_ TY)s Y~ ) yu) YU)

= e, Gy, () (), | (2.2.82)
(zv)  (yv),  (w)y (0%,

obeying the same simple propagation law as the centered second-order moments:
Ps,out =S- Ps,in : ST . (2283)

The elements of the beam fluctuation matrix may be considered as the centered second-order
moments of a probability distribution p (z,y, u, v) giving the probability that the fluctuation beam
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Fig. 2.2.9. Centroid coordinates of fluctuating
< X) [au] beam and corresponding variance ellipse character-
! izing the fluctuations.

has a position (z,y) and direction (u,v) at a random measurement. Similar to the second-order
moments of the Wigner distribution, only the three spatial moments are directly measurable. The
complete set can be obtained from a z-scan measurement as described in the section above, by
acquiring a couple of power density distributions in any measurement plane, calculating the first-
order spatial moments from each profile, derive the three variances according to (2.2.79)—(2.2.81),
and obtaining the second-order fluctuation moments in the reference plane from a fitting process.
Again, measurements behind a cylindrical lens are necessary to achieve all ten parameters.

Fluctuation widths can be derived from the second-order fluctuation moments. In analogy to
the beam width definitions, the fluctuation widths are

Al =22 {(<x2>s + <y2>s) + 7 [(<x2>s — <y2>s)2 +4 (xy}f] %}2 , (2.2.84)

A =2 V2 {(<CCQ>q + (%)) -7 [(<:132>q — <y2>s)2 +4 (xy}ﬂ %}2 (2.2.85)
with
7= sgn ((«*), = (s),) (2.2.86)

where A/ and A; are the beam fluctuation widths along the principal axes of the beam positional
fluctuations and where

L en (22w,
f=ga (<x2>s— <y2>s> (2.2.87)

is the signed angle between the z-axis and that principal axis of the beam fluctuation which is
closer to the z-axis (Fig. 2.2.9). The principal axes of the beam positional fluctuations may not
coincide with the principal axes of the power density distribution.

The width of the positional fluctuations along an arbitrary direction, given by the azimuthal
angle «a, is given by

A, =4 \/<x2>s cos? a + 2 (zy), sina cosa + (y2)_sin’ a . (2.2.88)
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2.2.7.2 Relative fluctuations

For many applications the widths of the positional fluctuations compared to the momentary beam
profile width might be more relevant than the absolute fluctuation widths. The relative fluctuation
along an arbitrary direction, given by the azimuthal angle «, is defined by

Ay — (x2), cos? a + 2 <xy>ss?noz cos o + (y?), si.nZa . (2.2.89)
’ (x2), cos? a4+ 2 (zy), sina cos o + (y?)  sin” «
The effective relative fluctuation may by specified by
2 2
Aer = 1| 1= ) ), (2.2.90)

2.2.7.3 Effective long-term beam widths

For applications with response times much longer than the typical fluctuation durations the time-
averaged intensity distribution rather than the momentary beam profile determines the process
results:
to+T
- 1
I(z,y) = T / I(z,y,t)dt. (2.2.91)

to

The effective width of the time-averaged power density profile along an azimuthal direction enclos-
ing an angle of o with the z-axis can be obtained from the widths of the momentary beam profile
and the fluctuation width by

defr.o = /@2 + AZ . (2.2.92)
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3.1 Linear optics

R. GUTHER

The propagation of light and its interaction with matter is completely described by Maxwell’s
equations (1.1.4)—(1.1.7) and the material equations (1.1.8) and (1.1.9), see Chap. 1.1.

In this chapter the propagation of light in dielectric homogeneous and nonmagnetic media is
discussed. Furthermore, monochromatic waves are assumed and linear interaction. The implications
thereof for the medium are:

— Relative permittivity: e, (¢(E, H) in (1.1.8)) is a complex tensor, which in most cases depends
on the frequency only, but in special cases also on the spatial coordinate.

— Relative permeability: u, = 1 (u(E, H) in (1.1.9)).

— Electrical charge density: p = 0.

— Current density: j = 0.

3.1.1 Wave equations

Maxwell’s equations together with the material equations and the above assumptions result in the
time-dependent wave equation for the electric field

g, 02
0

with
co = 2.99792458 x 10® m/s: vacuum velocity of light,

02 0? 9?

delta operator.

An identical equation holds for the magnetic field H(r,t).
For the following discussion we assume monochromatic fields, so that

E(r,t) = E(r) e'“? (3.1.2)
with
w: angular temporal frequency.

The magnetic field is related to E by the corresponding Maxwell equation (1.1.7)
curl E(r) = —iwpuoH(r) . (3.1.3)
Together with the ansatz (3.1.2), for isotropic media (e, is a complex scalar) (3.1.1) results in

AE(r)+k2a?E(r) =0 (wave equation) (3.1.4)
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with

ko = 21/ \o : wave number,
Ao : wavelength in vacuum,
f: complex refractive index, see (1.1.20).

For isotropic media and fields with uniform polarization the vector property of the field can be
neglected. This results in

AE(r)+kin* E(r) =0 (Helmholtz equation). (3.1.5)
In most cases the field can be approximated by a quasiplane wave, propagating in z-direction
E = Ey(r)el@t-kon2) (3.1.6)

Remark: There are different conventions for writing the complex wave (3.1.6):

1. Electrical engineering and most books on quantum electronics:

E x exp(iwt —ikon z),

for example [96Yar| [86Siel [66Kog2| [84Haul [91Sall [98Sve] [96Die| and this chapter, Chap. 3.1.
2. Physical optics:

E xexp(ikonz —iwt),

for example [99Bor] [92Lanl [75Jacl [05Hod} [98Hed, [70Col].
94Fel| discusses both cases.

Consequences of the convention: shape of results on phases of wave propagation, diffraction, interferences,

Jones matrix, Collins integral, Gaussian beam propagation, absorption, and gain.
With
OFE

kon E
5, < ko Eg|

(3.1.4) can be reduced to

E . .
AvEg + 2ikgn 88 0 -9 (Slowly Varying Envelope (SVE) equation) , (3.1.7)
z
with
02 0?
Ay = —= 4+ = : transverse delta operator (rectangular symmetry),
0x?2  0y?

see Chap. 1.1, (1.1.24a). Other names for SVE are: paraxial wave equation [86Sie|, paraxial
Helmholtz equation [96Ped| [78Gra).

The analogue approximation with respect to time ¢ instead of the spatial coordinate z is used

in ultrashort laser pulse physics \ .
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3.1.2 Polarization

Restriction of (3.1.2) to a plane wave along the z-axis, see Fig. 3.1.1, results in
E,| | Eoycos(wt—kz+dy)
E,| | Eoycos(wt—kz+dy)

{gg:’ Ezgg gy” expli(wt —k2)] = By Jexpli(wt — kz)] . (3.1.8)

Fig. 3.1.1. Electric field of a linear polarized wave
with propagation along the z-axis.

Definitions:

Ey = ,/Egm—i—Egy,

1 [ Ey, exp(i 59c):| :

J=— . normalized) Jones vector ,
Ey | Eoy exp(idy) ( )

0y and §, : phase angles,

= : transition to the complex representation ,

eonco E3JJ*/2 :  light intensity [W/m?] .

Different conventions for right-hand polarization:

1. Looking against the direction of light propagation the light vector moves clockwise in the x-y-plane of
Fig. 3.1.1 (|99Bor} [91Sall [96Ped| [98Hec] [88Klel [87Naul).

2. The clockwise case occurs looking with the propagation direction (right-hand screw, elementary particle
physics) (|84 Yar] [88Yehl [05Hod| and in this chapter).

Remark: J without normalization is also called Jones vector in [84Yar] [88Yehl [00Ro€ [77Az7] [86S0ll,

Vol. II, Chap. 27].
Jones Calculus [41Jonl [97Hual [88Yeh! [90Ro€l, [75Ger]:

Jo =My (3.1.9)
with

J1 : Jones matrix for the initial polarization state,
M : Jones matrix describing an optical element or system,
Jo : Jones matrix of the polarization state after light has passed the element or system.

In Table 3.1.1 the characterization of the polarization states of light with the Jones vector is given,
in Table 3.1.2 the characterization of optical elements with the Jones matrix.
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Table 3.1.1. Characterization of the polarization states of light with the Jones vector.

Jones vector J

vili]

[al;l} and a® +b2 =1

State of polarization

Linear polarization

Left circular polarization

Right circular polarization

Right elliptical polarization

Projection of the vector E Y / y

onto the x-y-plane viewed

along the propagation X X 7 %

direction z

Table 3.1.2. Characterization of optical elements with the Jones matriz.

Opt. Element Polarizer along Polarizer along Quarter-wave Half-wave Brewster-angle- Faraday rotator Coordinate rotation
the z-direction the y-direction plate tilted plate: by an angle a:

index n

M(a)

Jones Matrix {é 8}

o)

cos 3 —sin 3

cos v sin«
—sina cos «

Rotated element:
M(a) M M(—a)

9.

uoryezLIR[oJ ¢'1°¢

1e1 d Joy]
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Example 3.1.1.
M= Mgz My My, (3.1.10)

M : Jones matrix of the system which consists of elements with the matrices My, My, M3. Light
passes first the element with M; and last the element with Ms.

IR B N o o |10 right
Example 3.1.2. J; = 7 [1 (linear 45°-polarization), M = 0 4 ( loft quarter-wave plate),
o 1 1 right . . .
Jo=M-J; = 7 [j:i ( Joft circular polarization).

Development: Any Jones vector can be developed into a superposition of two orthogonal Jones
vectors:

J=a1J1 +axJs (3111)
with  J1J5=0.

Example 3.1.3. linearly polarized light = left polarized light + right polarized light .

Partially polarized light: If parts of both coefficients of the E-vector are uncorrelated, there is a
mixing of polarized and nonpolarized light. It is described by the four components of the Stokes
vector {so, s1, S2, 83}, using (...) to signify averaging by detection:

so = (E2) + (E) = Eg +Eg,, (3.1.12)

s1=(E7) — (Ey) = Bg, — By, (3.1.13)

sg =2(E E, cos[d, —d,;]) = 2Eu,Eoy cos(dy — ) , (3.1.14)

s3=2(E,Ey, sin[d, —d,;]) = 2Eo,Eoy sin(dy — d,) (3.1.15)
with

sg > 8T+ 85+ 53 = si=s1+s5+s5, (3.1.16)

where = means the transition from partially polarized light to completely polarized light, shown
with the terms of Fig. 3.1.1.

Meaning of the s; :
sp: power flux,
/8% + 83+ 53/so:  degree of polarization,
/52 +53/sg: degree of linear polarization,
s3/so: degree of circular polarization.

Mueller calculus ([75Ger] [77Azz [90Roe| [95Bas]): extension of the Jones calculus for partial-
coherent light, where the four dimensional Stokes vector replaces the Jones vector and the real
4 x 4 Mueller matrices the complex 2 x 2 Jones matrices. The Jones calculus is usually sufficient
to describe coherent laser radiation.

Measurement of the polarization state:

~ Partially polarized light: [87Nau|, {76Jen, Chap. 27.6), Chap. 3], Sect. 14-25],
[95Bas, Vol. 2, Chap. 22.15], [75Ger]. Result: Stokes vector.
— Pure coherent light: see [05Hod|]. There are commercial systems for this task.

Eigenstates of polarized light are those two polarization states (Jones vectors) which reproduce
themselves, multiplied with a complex factor (eigenvalue), if monochromatic light passes an optical
element or system.

Calculation: see [97Hua) , application: decoupling of the polarization mixing during round
trips in resonators [74Jun].
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3.1.3 Solutions of the wave equation in free space

Following (3.1.2), each of the wave solutions given in this section must be multiplied with the factor
e!“! to obtain the propagating wave of (3.1.1).

3.1.3.1 Wave equation

The solutions of the wave equation (3.1.4) are vector fields.

3.1.3.1.1 Monochromatic plane wave

E =Eqexp{-ikoner+ip}, (3.1.17)
H = (e x Eg) exp{—ikoner+ip} (3.1.18)
Coto
with

T : position vector,

e: unit vector normal to the wave fronts,
ko = 27/ \ : wave number,

n: complex refractive index,

@ : phase.

For the phase velocity and the wave group velocity see Sect. 3.1.5.3.

3.1.3.1.2 Cylindrical vector wave

E = Eye. H (kop) (3.1.19)
E

H=i2 (ez x p> HP (kop) (p> \) (3.1.20)
Cotto P

for time-harmonic electric source current density on the z-axis of a cylindrical coordinate system
with the coordinates (p, ¢, z) : (radial distance, azimuthal angle, z-axis) [94Fel] Chap. 5].

H? . m*™ order Hankel function of the second kind [T0Ab1];

the change of convention in Sect. 3.1.1 includes: H,(f) = H,(,P [94Fell p. 487];
p: radial position vector,
e : unit vector along the z-axis.

3.1.3.1.3 Spherical vector wave

exp(—ikonr)

E=Ey (nxp)xn . SPW0nNT (3.1.21)
T
E ko
H= 20 (. SRERAT ) (3.1.22)
Colho r
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is the far field (1/r? and higher inverse power terms < 1/r-term) of an oscillating electric dipole
([99Bor} |94Leh! [75Jac]) with

Ey : amplitude [V],

p: unit vector of the dipole moment,

7 : unit vector pointing from dipole to spatial position,
r: radial distance.

3.1.3.2 Helmholtz equation

The approximative transition from the vectorial wave equation (3.1.4) to the Helmholtz equation
(3.1.5) (|99Bor]) results in scalar solutions. E is called: “field” [72Mar|, “complex displacement”

or “scalar wave function” [99Bor|, “disturbance” Vol. I].

3.1.3.2.1 Plane wave

E=FEjexp {—-ikoner+ip.} (3.1.23)
For the parameters see (3.1.18).

3.1.3.2.2 Cylindrical wave

E=E HP (konip) (p> o) (3.1.24)

is the diverging field of a homogeneous line source [41Str) Chap. IV], [94Fell Chap. 5]. For the
parameters see (3.1.19).

3.1.3.2.3 Spherical wave

exp(—ikonr)

E=E,- (r>Xo), (3.1.25)

r

parameters see (3.1.21).

3.1.3.2.4 Diffraction-free beams

3.1.3.2.4.1 Diffraction-free Bessel beams

Diffraction-free Bessel beams without transversal limitation are discussed in [05Hodl [91Niel [R8Mil].

E(z,y,z) = Eo - Jo(ap) - exp{—i cos (0p) koz} (3.1.26)

with
Ey : amplitude vector [V/m],
Jo : zero-order Bessel function of the first kind [70Abr]|; higher-order Bessel beams see [96Hall;

p = +/x2 + y2: radial distance from the z-axis,
a = ko sin O [m~1],
Ogp : convergence angle of the conus of the plane wave normal to the z-axis, see Fig. 3.1.2.
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3.1.3.2.4.2 Real Bessel beams

Real Bessel beams are limited by a finite aperture D of the optical elements needed or Gaussian
beam illumination (Gaussian Bessel beams [87Gor]).

Methods of generation: axicons (Fig. 3.1.2), annular aperture in the focus of a lens
91Nie], holographic or diffractive elements. Because of finite aperture

diffraction the latter display approximately the shape of (3.1.26) with cutoff at a geometric de-
termined radius 7y, which includes N maxima (Fig. 3.1.3) and different amplitude patterns in
dependence on z.

il
R
0 \\/ \,/\\/

0 2 4 6 8 10 12
Radius r

Intensity (normalized to maximum)
o
o~
——

Fig. 3.1.2. Generation of a Bessel beam with help Fig. 3.1.3. Transversal intensity structure of a
of an axicon A by a conus of plane-waves propaga-  Bessel beam (o< J3(r)).
tion directions.

Advantage of Bessel beams: Large depth of focus 2 zgp between P1 and P2 in Fig. 3.1.2 (thin
“needle of light”) for measurement purposes.

Disadvantage: Every maximum in Fig. 3.1.3 contains in the corresponding circular ring nearly
the same power as the central peak. High power loss occurs if the central part is used only [05Hod].

3.1.3.2.4.3 Vectorial Bessel beams

Vectorial Bessel beams are discussed in [96Hal|.

3.1.3.3 Solutions of the slowly varying envelope equation

Gaussian beams are solutions of the SVE-equation (3.1.7) [91Sall [96Ped|, [86Siel [78Gral, which is
equivalent to paraxial approximation or Fresnel’s approximation, see Sect. 3.1.4.

The transition from SVE-approximated Gaussian beams towards an exact solution of the wave
equation in the non-paraxial range is given in a Lax-Wiinsche series [75Lax]| [7T9Agr] |92Wue|. For
contour plots of the relative errors in the Gaussian beam volume see [97For 97Zen|.

The vectorial field of Gaussian beams is discussed in [79Dav] [95Gou], containing a Lax-Wiinsche
series; Gaussian beam in elliptical cylinder coordinates are given in [94Soil [00Gou].
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3.1.3.3.1 Gauss-Hermite beams (rectangular symmetry)

Elliptical higher-order Gauss-Hermite beam:

Epn(z,y,2) = EgUp (2, 2) Up(y, 2) exp{—ikoz} , (3.1.27)
Won x z2 i x? )
Un(x,2) = w;éz) H,, <u\)i§(z)> exp {wQ(z) —i 2];%0(2)} exp {ipm(2)} , (3.1.28)
Un(y,2) = Un=nlz =y, 2) (3.1.29)
with

wWog - the 1 /e2-intensity waist radius,

205 = 7”)‘\’03: : the Rayleigh distance (half depth of focus),
22 9 . . .
Wy (2) = wozq 1+ ol the Egp-beam 1/e*-intensity radius,
0

R.(z) = z4/1+ = : the radius of curvature of the wavefront at position z,
20

z

om(z) = (% + m) arctan (%) : Gouy’s phase, changing sign for the transition through z = 0,

wy(2)

2
H,, <f> : the Hermite polynomial of order m [70Abr],

Ho(&) =1, Hi(§) =2¢&, Hy(&) =462 -2, H3(¢) =8&°—12¢, Hy(€) = 16£* —48¢%+12, ...,

7 exp (—52/2) exp (—52/2) _
4 df {\/WHW(@} {\/WHH(@} - 5mn 5

1 form=n . .
Omn = {0 for m % n} (orthogonality relation) . (3.1.30)
Example 3.1.4. Rotational symmetrical Gaussian fundamental mode (Gaussian beam):
Specialization of (3.1.27): m =n =0, woy = woy = wo, r = /22 +y2.
2

kr? 1
Eyo(r,2z) = Ey wu(jz) exp {_wg(z) -1 25;2) } exp {i 3 arctan ZZO} exp{—ikz} , (3.1.31)

(2) 142 R() \/1+Zg
w2 ) = w, - Z)=Z - .
0 22’ 22

Properties of Eyy (fundamental mode): The shape of the Gaussian FEyg-beam is depicted in
Fig. 3.1.4. Parameters of Eyg in Fig. 3.1.4 are:

C': curves with constant amplitude decrease as E(r,z) = E(0, z)/e
or constant intensity decrease as I(r,z) = I(0,2)/e?,
P: phase fronts with radius of curvature R(z),
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Fig. 3.1.4. Shape of the Gaussian Fyo-beam.
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Fig. 3.1.5. (a) Cross section of a Gaussian beam perpendicular to the z-axis. (b) Power transmitted by
a circular aperture with the relative radius r/w in a cross section.

Table 3.1.3. Characteristic points in Fig. 3.1.5.

Point in Relative abscissa Relative intensity, Relative transmission, Characterization
Fig. 3.1.5a, b r/w Fig. 3.1.5a Fig. 3.1.5b

Py 0.588 0.5 0.5 FWHM *

Py 1 0.135 0.865 1/e%int. P

Ps 1.57 0.01 0.99 trunc. ©

Py 2.3 0.001 0.999 trunc. ¢

# Full width half maximum/2.

P 1/e*-intensity or 1/e-amplitude.

¢ Diffraction of Ego-beam by circular aperture = 17 % intensity ripple p. 667].

4 Diffraction of Ego-beam by circular aperture = 1 % intensity ripple p. 667]
(no essential effect of truncation).

wp : beam waist,

zo: Rayleigh distance, half of the confocal parameter b = 2z, (similarly to depth of focus in
usual optics), that z-value, where the cross section 7twl%L = 2ntw} of the Gaussian beam
has doubled in comparison with the waist,

Og = \/(mwp) : 1/e?-intensity divergence angle toward the asymptotes A.

In Fig. 3.1.5a the cross section of a Gaussian beam perpendicular to the z-axis is given, in
Fig. 3.1.5b the power transmitted by a circular aperture with the relative radius r/w in a cross
section. Characteristic points in Fig. 3.1.5 are listed in Table 3.1.3.

Astigmatic and general astigmatic generalizations of the elliptical Gaussian beam: see Sect. 3.1.7.
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3.1.3.3.2 Gauss-Laguerre beams (circular symmetry)

! 2
Biy(r1,2) = Eo exp {1 [kz — g (2)]} <ﬂ> 4 ()

w(z) \ w(z)
B r? _ k x* cos (l1))
<on{ =5~ 7m0 { it (313

with
z : propagation direction,
r,¢ @ polar coordinates in the plane L z-axis,
mwd

2= the Rayleigh distance (half depth of focus),

2
w(z) =wo |1+ (Z> : the Egg-beam 1/e*-intensity radius,
20

2
R(z)==z {1 + (Z—O) } : the radius of curvature of the wavefront at position z,
z

wip = (2p+ 1+ 1) arctan <Z> : Gouy’s phase,
20

L. : .
L, : Laguerre polynomial of degree p and order [ [7T0Abr]:

Lh©) =1, LiE=0+1)—-¢, L= W

- (+2)E- 3¢,

LL(e) = (l+3)(lz2)(l+1) B (l+3)2(l+2)er (ZJ;:&) gziég‘g .
/d 1 1 Ly _ 5 U+D)! ; ;

§ & exp(—&) L, (&) Ly(§) = 6pq o (orthogonality relation) , (3.1.33)
0

p!: the factorial p.

— Two degenerate mode patterns are formed by the cos- and sin-terms in (3.1.32).

— I =p =0 means the rotational symmetrical Gaussian beam F.

— The symmetry determines what system of Gauss-Laguerre polynomials or Gauss-Hermite poly-
nomials is more appropriate for a wave field development.

3.1.3.3.3 Cross-sectional shapes of the Gaussian modes

In Fig. 3.1.6 intensity distributions of Gauss-Hermite modes E,,,, are given (rectangular symmetry),
in Fig. 3.1.7 intensity distributions of Gauss-Laguerre modes E,,; (circular symmetry).
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Rectangular symmetry (Gauss-Hermite modes)

Fig. 3.1.6. Intensity distributions of Gauss-Hermite modes E,,,. The two digits at each distribution are
m and n.

Circular symmetry (Gauss-Laguerre modes)

Fig. 3.1.7. Intensity distributions of Gauss-Laguerre modes E,;. The two digits at each distribution are
pandl. .

3.1.4 Diffraction

Diffraction of light by aperture rims or amplitude and phase modifications inside the aperture:

— Solutions of Maxwell’s equations taking into account the material properties of the aperture:

— special cases: exact solutions \ 86Stal,

— mostly: numerical solutions.

— Starting with a field near the aperture with reasonable assumptions for this field or its mea-
surement: large variety of methods for different ranges of validity [99Bor| |86Sta} |61Hoe].
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3.1.4.1 Vector theory of diffraction

— Vectorial generalization of Kirchhoff’s theory: Given E and H in an aperture = FE and H in
the volume by Stratton-Chu Green’s function representation [23Kotl 41Str] [86Soll [91Tsh].

— Two-dimensional problem and meridional incidence of light [61Hoe|: Separation of the polar-
izations FE parallel and E perpendicular to the plane of incidence for half plane , slit

[99Bor|, gratings [80Pet|, and volume gratings [69Kog] |81Sol, [81Rus].

3.1.4.2 Scalar diffraction theory

Two sources of scalar diffraction theory are:

— Transition from vectorial theory to scalar theory: [86Soll. The information about the
polarization is lost.

— Mathematical formulation and generalization of Huygens’ principle: Each point on a wavefront
may be regarded as a source of secondary waves, and the position of the wavefront at a later
time is determined by the envelope of these secondary waves.

In Table 3.1.4 di raction formulae with fields given near the diffraction aperture are listed. Fig-
ures 3.1.8 and 3.1.9 are related to Table 3.1.4.

Remarks on the formulae of Table 3.1.4:

(3.1.37): Approximation of (3.1.34): Huygens’ principle with an additional directional factor (Fres-
nel).

(3.1.38): Approximation of (3.1.36): Huygens’ principle with a modified directional factor.

(3.1.39): Fresnel’s approximation (= paraxial approximation). The approximation conditions from
(3.1.34) to (3.1.39) resp. (3.1.40) are explained in [96For| [86Stal [87Ree].

Fresnel’s approximation: The condition Np(a/d)?/4 < 1 [91Sal| is valid for sharp-edged aper-
tures A, but it is weakened for the transmission of Gaussian-beam-like fields p. 635] or
Gaussian-like soft apertures. Fresnel’s approximation describes the propagation of the field from
plane z = 0 to plane z = z. This transformation can be cascaded to describe complex systems and
is an often used tool in paraxial propagation of radiation (Sect. 3.1.4.5.2).

Opaque screen

I

vector n W
/

/ Fig. 3.1.8. Diffraction at an aperture A with source
/ terms E(z’,y’,0) and/or %E(m',y/,z)L:O, re-
A S L X spectively, and a or b the maximum radial distances
Diffracted field  of source S or image point P, respectively. p; sym-
Eboy,2) bolizes different plane waves for (3.1.41)—(3.1.43).
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Table 3.1.4. Diffraction formulae with fields given near the diffraction aperture (rsp : see Fig. 3.1.8).

Integrals Formula Restrictions Ref.
Rayleigh- 9 [ exp(—ikr rsp > Ao, [©9Bo1]]
Sommerfeld Ersi(z,y,2) = _*//E z',y',0) ai ( p( - SP)) dz'dy’ (3.1.34)  plane aperture [B6Sta]
of 1% kind
Rayleigh- OE(z 7y z') exp(—ikrsp) sp > Ao,
Sommerfeld Ersa(z,y,2) = // { ] ) Top dz'dy’ (3.1.35) plane aperture
of 2°¢ kind ¢

1 rsp > Ao,
Fresnel-Kirchhoff Erk (1"7 Y, Z) = E [ERSl (1"7 Y, Z) + Ers2 (l‘, Y, Z)] (3136) curved aperture
Rayleigh- _
Sommerfeld Ersta(z,y,2) = //E y' eXp(rlkTSP) cos (n,rsp)dz’dy’ (3.1.37) s> Ao

SP
1%* kind approx.
Fresnel-Kirchhoff —i 1
approximation Erka(®,y,2) = //E v’ exp(rlkrsp) - 0052(n, rsr) daz’dy’ (3.1.38) 7sp > Ao
’ SP
refers to
Fig. 3.1.8
H9Bof
Fresnel’s Ere(z.9.2) i exp (—ikz) / E(z',y’,0) exp{ o ')+ (y-y')° } dz’dy’ (3.1.39) 2> A {QGF(?I]]
1 1 Fre b b - x5 ) ) - b

st i = o b
Fig. 3.1.8 [BTReq]

=

(continued)
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Table 3.1.4 continued.

Integrals Formula Restrictions Ref.
Fraunhofer iexp(—ikz)p L zz +yy’ a? [99Boﬂ
far-field Epra(z,y,2) = % // E(z',y’,0) exp {127IT}dx/dy' (3.1.40) g < 1 [68God]
approximation, A [D6For|
refers to . . [B7For|
Fig. 3.1.8 with the additional phase term . B6Sta
1 for & <1
_ z
b= . x2 + y2 .
exp § —i7=—— otherwise
Plane-wave 2-D Fourier transform (see remark on (3.1.40)) of the source distribution Es in plane z = 0: TSP > Ao [01Sa
representation S [IF8Loh]
(also: Ao(fa, fy) = / / Ei(z',y',0)exp {i27n(faz' + fyy')} dz’dy’, (3.1.41) [B6Stal
angular-spectrum Ao [D7For|
representation), [09Bo1]
refers to propagation of plane waves with the spatial frequencies f; and f, along the z-direction by distance z:
Figs. 3.1.8
and 3.1.9 exp{—i27r(fzm—|—fyy}éexp{—iZﬂ(fzx—i—fyy—ﬁ—\/1//\2—f§—fy2 z)} , (3.1.42)
addition of plane waves at distance z:
By = [ [t fyen{-ion (Lot fus JUN - 2o f32)fanas, Gy
F2Hf2<1/A2
equivalent to (3.1.34) [}
Far field in e oo d,f> A b1sal
the focal plane Ep(z,y) = p / / Es(z’,y") exp {i27’t (ix'—i—iy')}dx'dy' , (3.1.44)
of a lens, /\f_oo . Af A
refers to 5 2 (4
Fig. 3.1.9 p=exp (m—(m Hij)”?( _f)) (3.1.45)

[1e1 "d 1oy

sorpdo 1eouIT T'Q
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88 3.1.4 Diffraction [Ref. p. 131

X Plane wave Field £5(xy) Lens XA

N

p ¥y

A=, [ S z

Fig. 3.1.9. (a) Spatial frequencies of a plane wave with propagation direction @, with respect to the
plane = 0 (and ©, analogously) are f, and f, with O, = sin™'(Afs) = Afs and O, = sin™'(Af,) =~ \f,
(~: paraxial approximation). (b) Generation of the far field in the focal plane of a lens: The Fourier
transformation (d = f) is changed by an additional phase term for d # f with d: distance, f: focal length.

(3.1.40): Fraunhofer’s approximation

—  Fresnel number:
Np =a?/\z. (3.1.46)

— Validity of Fraunhofer’s approximation: Ng < 1.
p # 1 (parabolic phase): the intensity of diffracted light is the square of the modulus of the
Fourier transform of E(z,y,0) only.

— Additional condition with second Fresnel number Ngp/ = b*/\z < 1:
E(x,y,z) is the Fourier transform of E(z,y,0) in dependence on the spatial frequencies
o= (2/2)/A = Oy /X and f, = (y/2)/ A = Oy/X.

— Di erent conventions on the spatial Fourier transform F(f,) of a spatial distribution f(z):

— The convention of the plane-wave structure exp(ikz — iwt) is connected with the determi-
nation of F'(f,) by

F(fw) = / df]jf(x)e—iQT(fmz

[68Gool, [68Papl, [7T8Lohl [78Gasl [93Stol [05Hod].
— The plane-wave structure exp(iw ¢ — i kz) can be combined with

oo

F(f,) = / di f(z) ei2nfsm

—0o0

[71Coll [73Menl, [92Lug], but

oo

F(f,) = / da f(z)ei2nte

— 00

is defined also in [88Kle| [91Sall [95Will [06Ped].
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— Di erent approximations in (3.1.37) and (3.1.38):

2x€ — €2 + 2yn — n?
2’[“0

rsp = 1o +

[99Bor} [68Papl [78Gra] with ro from Fig. 3.1.8 versus

2px! — :E’2 + ny/ _ y/2
2z

(references on lasers: , optoelectronics: [68Gool [72Mar}, (91Sal|) for grating di rac-
tion: The sine of the diffraction angle sin ©, = x/r¢ is derived from principle and not by a
postpositive reasoning of the paraxial range x/z = tan 6, & sin ©,. /2 should be “translated”
into sin ©, for better approximation.

rsp ~ z -+

(3.1.41)—(3.1.43): Plane-wave spectrum or angular-spectrum representation (also Rayleigh-
Sommerfeld-Debye diffraction theory) [78Loh| [99Pau| is the plane-wave formulation of (3.1.34)
[78Lohl [97For|. Application: see Fourier optics [68Gool |83Stel, [93Sto].

(3.1.44), (3.1.45): Generation of the far field in the focal plane of a lens: d # f (object is outside
the object-side focal plane) = additional phase term p to the pure (inverse) Fourier transform
(d = f), similarly to (3.1.40).

Applications: generation of the spectrum of a function, possibility of mathematical operations
in the Fourier-space with complex filtering masks, correlation and convolution.

Another important diffraction theory

Diffraction theory after Young, Maggi, Rubinowicz : The light in point P of
Fig. 3.1.8 results from the unperturbed light and local waves, which are emitted by the edge
of the aperture A. Therefore, a line integral is to be calculated [99Pau]. There is an equivalence
with Fresnel-Kirchhoff’s theory.

3.1.4.3 Time-dependent diffraction theory

Two formulations of the time-dependent treatment of diffraction are possible:

1. A general Fresnel-Kirchhoff’s integral formula exists for time-dependent source functions in the
aperture A, see 99B01"L 99Pay.

2. Used more often now |[96Diel [99Paul: The time-dependent source functions are decomposed into
a superposition of monochromatic fields. The diffracted field is calculated for every monochro-
matic component by the stationary diffraction given above. The superposition of all diffracted
monochromatic components yields the time-dependent diffracted field.

3.1.4.4 Fraunhofer diffraction patterns

3.1.4.4.1 Rectangular aperture with dimensions 2a x 2b

In Fig. 3.1.10 the geometry of the diffraction from a rectangular aperture 2a x 2b is shown. The
x-part of the diffraction pattern in Fig. 3.1.10 is given in Fig. 3.1.11. In Table 3.1.5 the zeros and
maxima of the intensity distribution are listed.
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, 1.0 \
X g
/ ¥ 08 \
=
%/ /y« £ 06 —\>
S Normalized intensit
4 / X /y( S 04 \ . y
/Lé X 6 2 \ Normalized field
7 = ;
| 7 & 0.2 % i
/’b Opaque screen — E . . .
5 ofFwHMN - A
% Rectangular Diffraction -0.2 -
pattern
aperture A 0 0.5 1.0 15 2.0
xa/(Ad)

Fig. 3.1.10. Geometry of the diffraction from a
rectangular aperture 2a X 2b.

Fig. 3.1.11. z-part of the diffraction pattern in
Fig. 3.1.10. This is the diffraction pattern of a slit.
For more exact electromagnetic solutions of a slit

see |[61Hoel p. 266].

Table 3.1.5. Zeros and maxima of the intensity distribution.

Number n za/A\z I./1o
0 0 1
FWHM 2 x0.221 0.5
1 0.5 0
1 0.715 0.0472
2 1 0
2 1.230 0.0168
3 1.5 0
3 1.735 0.0083
4 2 0
4 2.239 0.0050
Field distribution:
dab 242 27 27h
E(z,y,z) = & Ey exp {—ik (z—l— x;tj)} sinc { )\ax} sinc { )\zy} (3.1.47)
G sin x . .

with sinc(z) = and Ey the electric-field amplitude .

Intensity:
2m 27h
I(x,y,2) =1(0,0, z) sinc? { ax} sinc? { 3 y} . (3.1.48)
z

If the Fraunhofer diffraction is observed in the focal plane, z has to be replaced by f.

3.1.4.4.2 Circular aperture with radius a

The circular aperture with radius a is discussed in p. 453]. In Fig. 3.1.12 diffraction by a
circular aperture is shown. In Fig. 3.1.13a the diffracted field and intensity and in Fig. 3.1.13b the
encircled energy in the diffraction plane with a circular screen are given. The zeros and maxima of
intensity for diffraction by a circular aperture are listed in Table 3.1.6.
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X
y
% 4
a /!
?1 g~ sind { y
d g
Opaque screen / z
Diffraction
Circular pattern
aperture A
Fig. 3.1.12. Diffraction by a circular aperture.

1.0 \ 1.0
s‘ 4
208\ 508 s
206 =
S _ B 06
2 04 " Normalized intensity = Tst | 2nd | 3rd
k5 ‘ s dark ring
S0 " ‘ Normalized field g 04
£ p l E
E . E
2 ol FWHiM \ 502
-0.2 - 0
0 02 04 06 08 10 12 14 16 0 02 04 06 08 10 12 14 16
a ra/(Ad) b ra/(Ad)

Fig. 3.1.13. (a) Diffracted field and intensity. (b) Encircled energy in the diffraction plane with a circular
screen.

Table 3.1.6. Zeros and maxima of intensity for diffraction by a circular aperture.

Number n rna/(Ad) I,/1o

0 0 1
FWHM 2 x 0.257 0.5

1 0.610 0

1 0.817 0.0175
2 1.117 0

2 1.340 0.00415
3 1.619 0

3 1.849 0.00160
4 2.121 0

4 2.355 0.00078

Field distribution:

E(r,z) = % Eq exp {—ik <z—|— Zj)} {2 ‘W} (3.1.49)

with Ey the electric-field amplitude and r the radius in the far-field plane.

Intensity:

2
I(r) = 1(0, 2) {2 W} : (3.1.50)
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92 3.1.4 Diffraction [Ref. p. 131

3.1.4.4.2.1 Applications
Airy’s disc:
1 Airy = 0.610\/sin o , (3.1.51)

1% minimum radius of the intensity distribution in the focal plane of an aberration-free lens (Lom-
mel 1885, Debye 1909, [99Bor]): Substitute in (3.1.50) a/z = sin o (numerical aperture =
sinus of the intersection angle o with optical axis in the focal point, generally: image point) and
T =11 Airy as above.

Annular aperture: obscuration of the central part in the circular aperture A of Fig. 3.1.12:

— Reduction of the central diffraction maximum width by ~ 20 %.
— Increase of secondary maximum by factor ~ 7.

— See Bessel beams, Sect. 3.1.3.2.4, [05Hod]|.

3.1.4.4.3 Gratings
Grating equation:
. . A
sin a+sin f=m — (3.1.52)
g

with

a: angle of incidence (see Fig. 3.1.14),

0 : diffraction angle,

g: grating constant (grating period, groove distance),

m: order of diffraction. Convention p. 25] often used: If the diffraction order is on
the same side with the zero order (m = 0) as the grating normal: m > 0, otherwise m < 0. In
Fig. 3.1.14, the directions of the +1st transmitted order and the grating normal (dashed and dotted
lines) are on the same side of the Oth transmitted order. Therefore m =1 > 0.

Slit factor: represents the diffraction by a single slit of the grating. Its form regulates the energy
distribution between the different orders m [82Hutl [99Bor]. For the real phase and reflection grat-
ings, it is substituted by the di raction e ciency curves in dependence on « or A. There is an

extreme diversity of cases. Catalogs of such curves: see [80Petl, [97Loe].

Theoretical spectral resolution of a grating:

Riheor = A/ (AXN) =m N =W (sin a + sin §)/A (3.1.53)

A
Focused

0th B
1 st g e ¢\> \ =1st
Reflected Transmitted V777 () th

orders |_ orders

Fig. 3.1.14. Reflected and transmitted orders of
a grating, here with N = 4 slits. The far-field dis-

Incident —— f Subsidiary tribution is wvisualized after focusing by an ideal
plane wave A maximum lens. Between the main maxima occur N — 2 sub-
Grating Lens Focal sidiary maxima. The dashed envelope is the slit

plane factor.
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with

N : number of grooves of the grating,
W : width of the grating,
a, (3 see (3.1.52).

Real resolution contains theoretical resolution and the aberrations of the optical elements for
collimation and focusing of the grating-diffracted plane waves or by the aberrations of the concave

gratings with imaging properties. [87Chr| |82Hut].

Holographical gratings |82Hut| show lower disturbations than mechanically produced gratings (ap-
plication: external laser resonators).

Blazed gratings diffract light into an order m wanted with more than 60-90 % over one octave of
wavelengths [80Pet| [82Hut| [97Loe].

Volume gratings: [81Soll, [81Rus].
Mountings of spectral devices: [82Hut].

3.1.4.5 Fresnel’s diffraction figures

Fresnel’s approximation is given in (3.1.39) in Table 3.1.4.

3.1.4.5.1 Fresnel’s diffraction on a slit

In Fig. 3.1.15 Fresnel’s diffraction pattern of a slit with width 2a is shown.

J Np=05 ] Np=35
—————————— 1 . 7
I ] I A—ﬁ&d
11 L1 1 [ - ]
J Ne=10 I Ny =40
I e J 571
| ] | | f 1 I
i AR R BT Fig. 3.1.15. Fresnel’s diffraction

pattern of a slit with width 2a
(see Fig. 3.1.10 with b = o00).
Fresnel’s number Np = a®/(\z)
is the essential parameter to char-
acterize the transition from far-
field (Fraunhofer) approximation
(Ng < 0.2...0.5) to near-field
(Fresnel) approximation (Np >
0.5). Nr = 0.5: one central maxi-
mum only, Nr = 3: three maxima,
Nr = N: N maxima. Hard-edge
diffraction results in a ripple in the
near field, which can be avoided
by soft apertures, for instance

Gaussian-like \\ (apodization
in optics [99Bor]). Figure after
86Sie} p. 721].
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94 3.1.4 Diffraction [Ref. p. 131

3.1.4.5.2 Fresnel’s diffraction through lens systems (paraxial diffraction)

Given: a system of lenses and the field distribution E(z,y) to be propagated.
The sequence of steps easily taken is:

— Given: E(z,y) in the plane z = 0. Required: the field in the plane z = 2. Solution: (3.1.39).
— Given: E(z,y) in the plane z = 0 and near to this plane a lens. Required the field in the plane
z = z. Solution: modification of (3.1.39) by an additional factor L(z’,y’) to:

Epm(x,y,Z):leXp{_lkz} //E z',y’,0) L(z',y")

xexp{iﬂ (xfx ) ;(y*y i } dz'dy’ (3.1.54)
i 12 2
L(z',y") =plz',y") exp{—ikntp} exp{W} (3.1.55)

with
n: refractive index of the lens,
t1, : thickness of the lens,

f: focal length of the lens,
p(x’,y’) : amplitude part, which can describe a marginal aperture or a Gaussian apodization.

A general complex function L(z’,y’) can model diffractive optical elements.
Cases of integration:

— No transversal limitations (without stops) and quadratic arguments of the exponential functions
due to analytical results. The Collins integral is the closed form of such a calculation (see
Sect. 3.1.7.4).

~ One stop (finite integration limits): The result includes the error function [7T0Abr].

— Two and more finite integration limits are not useful. Then, (commercial) numerical field prop-
agation programs through systems should be consulted.

Examples: [68Goo}, [91Sall [71Col, [851iz, [92Lug} |[68Pap].

The Beam Propagation Method (BPM) in integrated optics (many “infinitely thin lenses”) is the
generalization of this method [95Mael [91Spll [99Laul (98Hec].

3.1.4.6 Fourier optics and diffractive optics

Fourier optics results from the transformation of the temporal frequency methods of electrical
engineering to spatial frequency methods in optics, see Figs. 3.1.9, 3.1.10 and (3.1.41), (3.1.43),
(3.1.44).

References: principles of Fourier optics: [68Gool [78Lohl [83Ste, [851iz, [89Ars, [93Stol 98Hed|

99Laul, filtering: [92Lug]|, filtering in connection with holography: [96Har |[71Col], noise suppression:
91Wyr].

Example 3.1.5. Spatial spectral filtering

In Fig. 3.1.16 low-pass filtering of a laser beam with a four- f-setup is shown.
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Incident beam Low-pass Filtered beam

filter
Lens High Lens

Fig. 3.1.16. Low-pass filtering of a laser beam with
TIZ\WH‘/A*\ a four- f-setup . The mask is a low-pass filter,
which transmits a zero mode only and suppresses
s &71/ H \\l / the higher modes. The incident beam can also be
-— ¢ ‘ ¢ modified by a transmission element which changes

amplitude and phase.

Di ractive optical elements influence the propagation of light with help of amplitude- and/or phase-
changing microstructures whose dimensions are of the order of the wavelength mostly. They extend
the classical means of optical design. References: [67Lohl |84Schl, [07Tur] [00Tur} (00Mey} [01Jah].

Example 3.1.6.

— Gratings generated by mechanical or interference ruling on either plane or con-
cave substrates for the combination of dispersive properties with imaging 87Chi].

— Fresnel’s zone plates acting as microoptic lenses of [97Her].

— Mode transformation optics (“modane”) for transformation and filtering of modes of a laser
[94Soil.

— Generation of theoretical ideal wavefronts for optical testing with interferometrical methods

[95Bas| Vol. I1, Chap. 31].

— Mode-discriminating and emission-forming elements in resonators 194Leg] (97Leg] (99Zeil.

For pure imaging applications, refracting surfaces are still preferred, even in the micro-range
. Tasks with special dispersion requirements and special optical field transformations are
the main application of the diffractive elements with increasing share.

The technology of dispersion compensation and weight reduction in large optical systems by
special diffractive elements is partially solved, now.

3.1.5 Optical materials

Medium with absorption:
£ = i’ (3.1.56)

with

€ : complex relative dielectric constant (or tensor),
7v: complex refractive index,

weakly absorbing isotropic medium:

a <L ko ﬁ:n—ike:n—inn:n—ii, (3.1.57)
2ko

damped plane wave (unity field amplitude):
exp{—ikz} =exp{—iko(n —ik)z} exp {—iko (n —1i 201:5> z}
0

= exp {—ikoz - %z} : (3.1.58)
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96 3.1.5 Optical materials [Ref. p. 131

intensity:
I(z) =I(0) exp{—az} (Lambert-Beer-Bouguer’s law ) , (3.1.59)
amplification in pumped media:

I(z) = I(0) exp{g 2} (3.1.60)
with
o [m~']: (linear) absorption constant (standard definition [95Bas, Vol. IT, Chap. 35],
199Bor}, [91Sall [96Yar] |05H0d]]) or extinction constant or attenuation coefficient,
[m~1] : gain,

g
ke [m~1']: [88Yehl |95Bas| (or x [m~']: [99Bor} 04Ber|) extinction coe cient, attenuation index.

Different convention after (3.1.6): «, g, ke and x are defined with other signs, for example 7 = n (1 +ik)
if the other time separation (1% convention) is used [99Bor] Chap. 13], [95Bas| Vol. I, Chap. 9].

Measurement of «: see [85Koh| [04Ber] |82Brul, [90Roe, p. 34], Vol. II, Chap. 35].

3.1.5.1 Dielectric media

In Fig. 3.1.17 the real- and imaginary part of the refractive index in the vicinity of a resonance in
the UV are shown.

Single-resonance model for low-density media [99Bor] 96Ped]:

) 14 Ne¢?
= — 1 =
nen ¢ 2eom (Wi — w2 +iyw)
N é?~ (wg — w? Ne?
=91+ 27( ) —i e (3.1.61)
2eom (Wi — w?)? + 42 w?] 2eom (Wi — w?)? + 42 w?]

with

e = —1.602 x 107! C: elementary charge,

m = 9.109 x 103! kg : mass of the electron,

w =27 [s71]: circular frequency of the light,

wo [s7Y: circular resonant frequency of the electron,

4 A
= Visible
S |t range
| = \
S|E! \
= % : \
2| El b IR-
Sl Kt l \ resonances
E ! ) \ -
&£ ! / Resorlwance\
H v
Ao
Wavelength A Fig. 3.1.17. Real- and imaginary part of the refractive in-
I dex in the vicinity of a resonance in the UV. The principal
- @o shape is explained by the classical oscillator model after
Circular frequency o J.J. Thomson, P. Drude, and H.A. Lorentz [99Bor} [88Yeh].
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v [s71]: damping coefficient,
N [m~3]: density of molecules,
g0 = 8.8542 x 10712 As/Vm: electric permittivity of vacuum.

Examples see [96Ped| [88Kle], generalization to dense media see [96Ped| 88Kle| (99Bor].
The Kramers-Kronig relation connects n(w) with k(w) [88Yeh].

3.1.5.2 Optical glasses

Dispersion formula |\ :

By \? By\? B3\’
2(\) =1 ! 2 < limeier’s formula) . 1.62
n2(\) =1+ JE R ARy S g s ox (Sellmeier’s formula) (3.1.62)

The dimensions of the constants are given in example 3.1.7. The available wavelength range is
given by the transmission limits, usually.

Example 3.1.7. [96Sch]: Glass N-BK7: A [um], B; = 1.03961212, By = 2.31792344 x 10!, By =
1.01046945, Cy = 6.00069867 x 10~3 [um?], C5 = 2.00179144 x 10~2 [um?], C3 = 1.03560653 x 102
[um?], n(0.6328 um) = 1.51509, n(1.06 um) = 1.50669.

Other interpolation formulae for n(\) are given in [95Bac|, [95Bas, Vol. II, Chap. 32], [05Grol

p. 121].

Further information is available from glass catalogs (see Sect. 3.1.5.10) and from subroutines in
commercial optical design programs:

. . . -1
— relative dispersive power or Abbe’s number v4 = M7 with nq(587.56 nm = yellow He-
ng —

ng
line), np(486.13 nm = blue H-line), nc(656.27 nm = red H-line) |[95Bac| [80Sch|; application:
h

achromatic correction of systems |84Haf|,
— spectral range of transmission,
— temperature coe cients of n and vy,
— photoelastical coe cients,
— Faraday’s e ect (Verdet’s constant),
— chemical resistance, thermal conductivity, micro hardness etc.

nection with laser irradiation damage is presented in | |. Specific values of laser glasses are

Sellmeier-like formulae for crystals are available in [95Bas| Vol. II, Chap. 32]. Information in con-
given in tables in [O1Iff].

3.1.5.3 Dispersion characteristics for short-pulse propagation

The parameters can be calculated from the dispersion interpolation (3.1.62) [91Sal, [96Die]:

Bv) =n(v) 22[—1/ (propagation constant [m~1]) , (3.1.63)
0
_ % ; —1
Cph = ) (phase velocity [m s™']) , (3.1.64)
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I\
|
—_

v="% =755 (group velocity [m s~1]), (3.1.65)
dv dw
1 423 dz 3 d /1 L .
D, = At 27 12 = dv <U> (group velocity dispersion (GVD)) (3.1.66)
with

v: frequency of light,
co : velocity of light in vacuum.

Application: Temporal pulse forming by the GVD of dispersive optical elements [96Die} [01Ben).

3.1.5.4 Optics of metals and semiconductors

The refractive index of metals is characterized by free-electron contributions (wy = 0 in (3.1.61)).
One obtains from [67Sok},[72Woo|, [905Bas| Vol. II, Chap. 35] with a plasma resonance (here collision-
free: v = 0):

n2w)=1— (@)2 (3.1.67)

w
with
—1 . . .
wp [87']: plasma frequency, depending on free-electron density [88Kle].
From (3.1.67) follows

- n(w) <1 for w > wp, which means A < A\, (example: A, = 209 nm for Na): transparency,
— pure imaginary n(w) for w < wp, A, < A.

Other effects change the ideal case (3.1.67) [88Kle].
The complex refractive index of semiconductors is determined by transitions of electrons bet-
ween or within the energy bands and by photon interaction with the crystal lattice (reststrahlen

wavelength region). It depends strongly on the wavelength and is modified by heterostructures and
dopands |71Pan| [95K1i|, [95Bas, Vol. II, Chap. 36].

3.1.5.5 Fresnel’s formulae

Fresnel’s formulae describe the transmission and reflection of plane light waves at a plane interface
between

— homogeneous isotropic media: and other textbooks on optics,

— homogeneous isotropic medium and anisotropic medium: special cases and other
textbooks on optics,

— general case of anisotropic media: [58Fed],

— modification by photonic crystals: [95Joal [01Sak].

Fresnel’s formulae for the amplitude (field) reflection and transmission coe cients are listed in
Table 3.1.7.

Plane of incidence: plane, containing the wave number vector k of the light and the normal vector
n on the interface.

Landolt-Bérnstein
New Series VIII/1A1



U14SUIQE-HOpUL]

TVI/IIIA SoLog moN

Table 3.1.7. Fresnel’s formulae for the amplitude (field) reflection and transmission coefficients.

Case The four values Using the angles sin @' is eliminated
0,0’ A, and 1’ © and ©' only ,
are considered A=
n
Reflection
o E! fL cos©® — ' cosO' _sin(@ - 6’) cosO — /72 —sin2 O (3.1.68)
s = = 5 51 / B / L.
E. n cos©@ +n' cos© sin(@ + ©/) 05O + V/i? —sin2 0
Reflection
E/ f' cos® — i cosO' tan(@ — O') 72c0sO — /72 —sin2 O (3.1.69)
Tp = /—/— = N o o ’ / .1
» =, A’ cosO + i cos O tan(@ + O7) 72 c0s O + /72 — sin2 O
Transmission
E! 2h cos @ 2 ¢in®’ cos® 2 cos©@ (3.1.70)
b= B, A’ cos®+n cos O’ sin(6 + 6) cos @ + /72 —sin? O -
Transmission
B! 2h cos @ 2 sin®’' cos@ 27, cos @ (3.1.71)
tp:Fp: A’ cos & + fi cos O sin(6 + 6©') cos(© —O) cos © + 72 y/n2 — sin? O .
Application Mostly used for In a stack of films, the See remark
of cases pure dielectric media. angles to the axis were in Sect. 3.1.5.5.

calculated previously.
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Fig. 3.1.18. Refraction at an interface, represented in the plane of incidence: (a) FEs-case, (b) Ep-case.
The commonly used convention is shown for the orientation of the relevant vectors (k: the wave number
vector, E: the electrical field, and H: the magnetic field) ensuring that k, E, and H are a right-handed
system in every case. The E-field is important for the action on a nonmagnetic material.

Polarization:

~ E perpendicular to the plane of incidence: s-polarization (TE-case or o-case [88Kle]), the cor-
responding E-component is called £ or Eg (s: “senkrecht” (German) which means
“perpendicular”) or index E |97Hual or index x |[90Roé, [77Azzl [91Sal].

— FE parallel to the plane of incidence: p-polarization (TM-case or m-case [88Kle]), the corre-
sponding E-component is called E) or I, or index M [97Hua] or index y
[90Ro¢} [77Azz, [91Sal].

Snell’s law:
f sin® =n' sinO’ (3.1.72)

with

n, 7’ : refractive indices of both media, respectively,
O, ©': see Fig. 3.1.18.

Other convention than Fig. 3.1.18b [58Mac, [89Ghal, [91Ish| (electrical engineering) on the orientation of
the E-vectors: E and E” point into the same direction for ® — 0, H changes sign; application: E-

interferences.
Remark:

— fis real and 7’ is complex (absorption [76Fed! [77Azz| or gain [88Boil).
~ 7
— nand n’ are real and i = nf < 1and (72 —sin? ©) < 0 (total reflection). Then /72 — sin? @ =
0
iy/sin? @ — a2 yields for (3.1.68) and (3.1.69) rs = exp (id;) and r, = exp (id,) (modulus = 1,

5 W 5 W
all energy reflected) and tan 53 = —SHéTQn and tan ?p = —S;;Tsen .

The intensities in the media are calculated with help of the z-component of Poynting’s vector
[88Kle] [90R o€} [76Fed].

Reflectance (reflected part of intensity):

Rep = |rspl” - (3.1.73)
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